
ROBOTICS

Technical reference manual
RAPID overview

Trace back information:
Workspace Main version a642
Checked in 2025-01-31
Skribenta version 5.6.018

Technical reference manual
RAPID overview

RobotWare 7.18

Document ID: 3HAC065040-001
Revision: M

© Copyright 2019-2025 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2019-2025 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...
9How to read this manual ...

111 Basic RAPID programming
111.1 Program structure ...
111.1.1 Introduction ..
131.1.2 Basic elements ...
171.1.3 Modules ..
201.1.4 Predefined data ..
211.1.5 Routines ..
271.2 Program data ...
271.2.1 Data types ...
291.2.2 Data declarations ..
351.3 Expressions ...
351.3.1 Types of expressions ...
381.3.2 Using data in expressions ...
391.3.3 Using aggregates in expressions ...
401.3.4 Using function calls in expressions ...
421.3.5 Priority between operators ..
431.3.6 Syntax ...
451.4 Instructions ..
461.5 Controlling the program flow ...
481.6 Various instructions ...
501.7 Motion settings ...
541.8 Motion ...
621.9 Input and output signals ...
651.10 Communication ...
691.11 Interrupts ...
731.12 Error recovery ..
771.13 UNDO ...
801.14 System & time ..
811.15 Mathematics ...
841.16 File operation functions ..
851.17 RAPID support instructions ...
891.18 Calibration & service ..
901.19 String functions ..
921.20 Multitasking ...
981.21 Backward execution ..

1032 Motion and I/O programming
1032.1 Coordinate systems ...
1032.1.1 The tool center point of the robot (TCP) ...
1042.1.2 Coordinate systems used to determine the position of the TCP
1112.1.3 Coordinate systems used to determine the direction of the tool
1142.2 Positioning during program execution ...
1142.2.1 Introduction ..
1162.2.2 Interpolation of the position and orientation of the tool
1202.2.3 Interpolation of corner paths ..
1262.2.4 Independent axes ..
1292.2.5 Soft Servo ..
1302.2.6 Stop and restart ..
1312.3 Synchronization with logical instructions ...
1352.4 Robot configuration ...
1392.5 Robot kinematic models ...
1432.6 Motion supervision/collision detection ...
1472.7 Singularities ...

Technical reference manual - RAPID overview 5
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Table of contents

1502.8 Optimized acceleration limitation ..
1512.9 World Zones ...
1562.10 I/O principles ..

1593 Glossary

161Index

6 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This is a reference manual containing a detailed explanation of the programming
language as well as all instructions, functions, and data types. This manual is
particularly useful when programming offline. Inexperienced users should start
with Operating manual - OmniCore.
This manual describes RobotWare 7.

Usage
This manual should be read during programming.

Who should read this manual?
This manual is intended for someone with some previous experience in
programming, for example, a robot programmer.

Organization of chapters
The manual is organized in the following chapters:

ContentsChapter

Answers questions like "Which instruction should I use?" or "What
does this instruction mean?". This chapter briefly describes all in-
structions, functions, and data types grouped in accordance with
the instruction pick-lists you use when programming. It also includes
a summary of the syntax, which is particularly useful when program-
ming offline. It also explains the inner details of the language.

Basic RAPID program-
ming

This chapter describes the coordinate systems of the robot, its ve-
locity and other motion characteristics during execution.

Motion and I/O pro-
gramming

A glossary to make things easier to understand.Glossary

References

Document IDReference

3HAC065036-001Operating manual - OmniCore

3HAC065038-001Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC065039-001Technical reference manual - RAPID kernel

3HAC065041-001Technical reference manual - System parameters

3HAC066554-001Application manual - Controller software OmniCore

Revisions

DescriptionRevision

Released with RobotWare 7.0.A

Released with RobotWare 7.0.2.
• Image added in section Behavior of the backward execution on

page 100.

B

Continues on next page
Technical reference manual - RAPID overview 7
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Overview of this manual

DescriptionRevision

Released with RobotWare 7.1.
• Added support for UTF-8 (UNICODE) symbols, see String values on

page 14.
• Added information about file formats .modx and .sysx, seeModules

on page 17.
• The instruction Break has changed name to DebugBreak.
• Added StrFormat to String functions on page 90.
• Added information about independent collision stop without brake.

C

Released with RobotWare 7.2.
• Updated information about signals, see Input and output signals on

page 62.

D

Released with RobotWare 7.6.
• Added support for division of pos, see Arithmetic expressions on

page 35.
• Added information that both PP toMain and PP to routinewill remove

temporary world zones.
• Clarified limitation for backward execution and execution errors.

E

Released with RobotWare 7.8.
• Added support for scalar vector division of pos, see Arithmetic ex-

pressions on page 35.

F

Released with RobotWare 7.10.
• Added information about FitX instructions, see Fitting shapes to

points on page 83.
• The instruction UIShow and the data type uishownum are removed

from the manual as they do not work in RobotWare 7.

G

Released with RobotWare 7.12.
• Added the functions GetNextOption and GetNextProduct.
• Added the instructions Break, Continue, and TriggAbsJ.
• Added information about file extensions, see File format will enable

using UTF8 characters in strings and comments on page 17.

H

Released with RobotWare 7.13.
• Added new matrix instructions.
• Added instruction WristOpt.

J

Released with RobotWare 7.15.
• Added information about MultiMove.
• Updated general information about backward execution.
• Removed all objects for and references to Machine Synchronization.

K

Released with RobotWare 7.16.
• Added instruction MoveAbsL.
• Minor corrections.

L

Released with RobotWare 7.18.
• Added instruction BytesReset.

M

8 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Overview of this manual
Continued

How to read this manual
Typographic conventions

Examples of programs are always displayed in the same way as they are output
to a file or printer. This differs from what is displayed on the FlexPendant in the
following ways:

• Certain control words that are masked in the FlexPendant display are printed,
for example words indicating the start and end of a routine.

• Data and routine declarations are printed in the formal form, for example
VAR num reg1;.

In descriptions in this manual, all names of instructions, functions, and data types
are written in monospace font, for example: TPWrite. Names of variables, system
parameters, and options are written in italic font. Comments in example code are
not translated (even if the manual is translated).

Syntax rules
Instructions and functions are described using both simplified syntax and formal
syntax. If you use the FlexPendant to program, you generally only need to know
the simplified syntax, since the robot automatically makes sure that the correct
syntax is used.

Example of simplified syntax
This is an example of simplified syntax with the instruction TPWrite.

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient] | [\Dnum]

• Mandatory arguments are not enclosed in brackets.
• Optional arguments are enclosed in square brackets []. These arguments

can be omitted.
• Arguments that are mutually exclusive, that is cannot exist in the instruction

at the same time, are separated by a vertical bar |.
• Arguments that can be repeated an arbitrary number of times are enclosed

in curly brackets { }.
The above example uses the following arguments:

• String is a compulsory argument.
• Num, Bool, Pos, Orient, and Dnum are optional arguments.
• Num, Bool, Pos, Orient, and Dnum are mutually exclusive.

Example of formal syntax
TPWrite

[String ':='] <expression (IN) of string>

['\'Num':=' <expression (IN) of num>] |

['\'Bool':=' <expression (IN) of bool>] |

['\'Pos':=' <expression (IN) of pos>] |

['\'Orient ':=' <expression (IN) of orient>] |

['\' Dnum':=' <expression (IN) of dnum]';'

• The text within the square brackets [] may be omitted.

Continues on next page
Technical reference manual - RAPID overview 9
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

How to read this manual

• Arguments that are mutually exclusive, that is cannot exist in the instruction
at the same time, are separated by a vertical bar |.

• Arguments that can be repeated an arbitrary number of times are enclosed
in curly brackets { }.

• Symbols that are written in order to obtain the correct syntax are enclosed
in single quotation marks (apostrophes) ' '.

• The data type of the argument and other characteristics are enclosed in angle
brackets < >. See the description of the parameters of a routine for more
detailed information.

The basic elements of the language and certain instructions are written using a
special syntax, EBNF. This is based on the same rules, but with some additions.

• The symbol ::= means is defined as.
• Text enclosed in angle brackets < > is defined in a separate line.

Example
GOTO <identifier> ';'

<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

10 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

How to read this manual
Continued

1 Basic RAPID programming
1.1 Program structure

1.1.1 Introduction

Instructions
The program consists of a number of instructions which describe the work of the
robot. Thus, there are specific instructions for the various commands, such as one
to move the robot, one to set an output, etc.
The instructions generally have a number of associated arguments which define
what is to take place in a specific instruction. For example, the instruction for
resetting an output contains an argument which defines which output is to be reset;
for example Reset do5. These arguments can be specified in one of the following
ways:

• as a numeric value, for example 5 or 4.6
• as a reference to data, for example reg1

• as an expression, for example 5+reg1*2

• as a function call, for example Abs(reg1)

• as a string value, for example "Producing part A"

Routines
There are three types of routines – procedures, functions and trap routines.

• A procedure is used as a subprogram.
• A function returns a value of a specific type and is used as an argument of

an instruction.
• Trap routines provide a means of responding to interrupts. A trap routine

can be associated with a specific interrupt; for example when an input is set,
it is automatically executed if that particular interrupt occurs.

Data
Information can also be stored in data, for example tool data (which contains all
information on a tool, such as its TCP and weight) and numerical data (which can
be used, for example, to count the number of parts to be processed). Data is
grouped into different data types which describe different types of information,
such as tools, positions and loads. As this data can be created and assigned
arbitrary names, there is no limit (except that imposed by memory) on the number
of data. These data can exist either globally in the program or locally within a
routine.
There are three kinds of data – constants, variables and persistents.

• A constant represents a static value and can only be assigned a new value
manually.

• A variable can also be assigned a new value during program execution.

Continues on next page
Technical reference manual - RAPID overview 11
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.1 Introduction

• A persistent can be described as a “persistent” variable. When a program is
saved the initialization value reflects the current value of the persistent.

Other features
Other features in the language are:

• Routine parameters
• Arithmetic and logical expressions
• Automatic error handling
• Modular programs
• Multitasking

The language is not case sensitive, for example upper case and lower case letters
are considered the same.

12 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.1 Introduction
Continued

1.1.2 Basic elements

Identifiers
Identifiers are used to name modules, routines, data, and labels, for example:

MODULE module_name

PROC routine_name()

VAR pos data_name;

label_name:

Only characters in ISO 8859-1 are allowed.
The first character in an identifier must be a letter. The other characters can be
letters, digits, or underscores (_).
The maximum length of any identifier is 32 characters, each of these characters
being significant. Identifiers that are the same except that they are typed in the
upper case, and vice versa, are considered the same.

Reserved words
The words listed below are reserved. They have a special meaning in the RAPID
language and thus must not be used as identifiers.
There are also a number of predefined names for data types, system data,
instructions, and functions, that must not be used as identifiers.

BREAKBACKWARDANDALIAS

CONTINUECONSTCONNECTCASE

ELSEDODIVDEFAULT

ENDIFENDFUNCENDFORELSEIF

ENDTESTENDRECORDENDPROCENDMODULE

EXITERRORENDWHILEENDTRAP

FUNCFROMFORFALSE

LOCALINOUTIFGOTO

NOTNOSTEPINMODULEMOD

PROCPERSORNOVIEW

RETRYRECORDREADONLYRAISE

TESTSYSMODULESTEPRETURN

TRUETRAPTOTHEN

VIEWONLYVARUNDOTRYNEXT

XORWITHWHILE

Spaces and new-line characters
The RAPID programming language is a free format language, meaning that spaces
can be used anywhere except for in:

• identifiers
• reserved words
• numerical values

Continues on next page
Technical reference manual - RAPID overview 13
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.2 Basic elements

• placeholders
New-line, tab and form-feed characters can be used wherever a space can be used,
except for within comments.
Identifiers, reserved words, and numeric values must be separated from one another
by a space, a new-line, tab, or form-feed character.

Numeric values
A numeric value can be expressed as:

• an integer, for example 3, -100, 3E2
• a decimal number, for example 3.5, -0.345, -245E-2

The value must be in the range specified by the ANSI IEEE 754 Standard for
Floating-Point Arithmetic.

Logical values
A logical value can be expressed as TRUE or FALSE.

String values
A string value is a sequence of UTF-8 symbols and control characters (non-ISO
8859-1 (Latin-1)). Character codes can be included, making it possible to include
non-printable characters (binary data) in the string as well. The string length can
be maximum 80 bytes.
UTF-8 symbols are supported only in the following places:

• Comments in RAPID code
• Content in RAPID strings

Example:
"This is a string"

"This string ends with the BEL control character \07"

If a backslash (which indicates character code) or double quote character is
included, it must be written twice.
Example:

"This string contains a "" character"

"This string contains a \\ character"

Comments
Comments are used to make the program easier to understand. They do not affect
the meaning of the program in any way.
Comments use UTF-8 format, which means all symbols are supported, including
symbols used in different languages, and emojis.
A comment starts with an exclamation mark (!) and ends with a new-line character.
It occupies the remainder of the line (starting from the exclamation mark) and
cannot occur outside a module declaration.

! comment

IF reg1 > 5 THEN

! comment

reg2 := 0;

Continues on next page
14 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.2 Basic elements
Continued

ENDIF

Placeholders
Placeholders can be used to temporarily represent parts of a program that are not
yet defined. A program that contains placeholders is syntactically correct and may
be loaded into the program memory.

DescriptionPlaceholder

data type definition<TDN>

data declaration<DDN>

routine declaration<RDN>

formal optional alternative parameter<PAR>

optional formal parameter<ALT>

formal (conformant) array dimension<DIM>

instruction<SMT>

data object (variable, persistent or parameter) refer-
ence

<VAR>

else if clause of if instruction<EIT>

case clause of test instruction<CSE>

expression<EXP>

procedure call argument<ARG>

identifier<ID>

File header
A program file can start with the following file header (it is not required):

%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

Syntax

Identifiers
<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

Numeric values
<num literal> ::=

<integer> [<exponent>]

| <decimal integer>) [<exponent>]

| <hex integer> | <octal integer>

| <binary integer>

| <integer> '.' [<integer>] [<exponent>]

| [<integer>] '.' <integer> [<exponent>]

<integer> ::= <digit> {<digit>}

<hex integer> ::= '0' ('X' | 'x')

<hex digit> {<hex digit>}

<octal integer> ::= '0' ('O' | 'o') <octal digit> {<octal digit>}

Continues on next page
Technical reference manual - RAPID overview 15
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.2 Basic elements

Continued

<binary integer> ::= '0' ('B' | 'b') <binary digit> {<binary digit>}

<exponent> ::= ('E' | 'e') ['+' | '-'] <integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<octal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<binary digit> ::= 0 | 1

Logical values
<bool literal> ::= TRUE | FALSE

String values
<string literal> ::= '"' {<character> | <character code> } '"'

<character code> ::= '\' <hex digit> <hex digit>

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

Comments
<comment> ::= '!' {<character> | <tab>} <newline>

Characters
<character> ::= -- UTF-8 symbols --

<newline> ::= -- newline control character --

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<letter> ::= <upper case letter> | <lower case letter>

<upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | Ý | Þ | ß

<lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | ß | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | ý | þ | ÿ

16 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.2 Basic elements
Continued

1.1.3 Modules

Introduction
The program is divided into program modules and system modules.
The file format for a program module is .modx and for system module is .sysx.

xx1100000550

File format will enable using UTF8 characters in strings and comments
When using the file extensions .modx and .sysx, the compiler reads that the file is
using UTF8 encoding. With UTF8 encoding it is possible to use all Unicode
characters in strings and comments. It will be possible to have, for example, Chinese
and Cyrillic characters, and emojis.
Example:
MODULE Module1

PROC main()

! Alert that robot needs service

TPWrite "Robot needs service: ⚠";
ENDPROC

ENDMODULE

Continues on next page
Technical reference manual - RAPID overview 17
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.3 Modules

Files in .mod or .sys format
In RobotWare 7.0 and earlier, the formats were .mod and .sys. To use these files
in newer releases, the files must be converted, not just renamed. To convert a file
manually, the file must be saved as UTF-8 without BOM (Byte Order Mark). When
loading these in a RobotWare 7.1 controller or later using RobotStudio, they are
automatically converted when saved.

Program modules
A program module can consist of different data and routines. Each module, or the
whole program, can be copied to disk, etc., and vice versa.
One of the modules contains the entry procedure, a global procedure called Main.
Executing the program means, in actual fact, executing the Main procedure. The
program can include many modules, but only one of these will have a main
procedure.
A module may, for example, define the interface with external equipment or contain
geometrical data that is either generated from CAD systems or created on-line by
digitizing (teach programming).
Whereas small installations are often contained in one module, larger installations
may have a main module that references routines and/or data contained in one or
several other modules.

System modules
System modules are used to define common, system-specific data and routines,
such as tools. They are not included when a program is saved, meaning that any
update made to a system module will affect all existing programs currently in, or
loaded at a later stage into the program memory.

Module declarations
A module declaration specifies the name and attributes of that module. These
attributes can only be added off-line, not using the FlexPendant. The following are
examples of the attributes of a module:

If specifiedAttribute

The module is a system module, otherwise a program moduleSYSMODULE

The module cannot be entered during stepwise executionNOSTEPIN

The module cannot be modifiedVIEWONLY

The module cannot be modified, but the attribute can be re-
moved

READONLY

The module cannot be viewed, only executed. Global routines
can be reached from other modules and are always run as
NOSTEPIN. The current values for global data can be reached
from other modules or from the data window on the FlexPend-
ant. NOVIEW can only be defined offline from a PC.

NOVIEW

For example:
MODULE module_name (SYSMODULE, VIEWONLY)

!data type definition

!data declarations

Continues on next page
18 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.3 Modules
Continued

!routine declarations

ENDMODULE

A module may not have the same name as another module or a global routine or
data.

Program file structure
As indicated above all program modules are contained in a program with a specific
program name. When saving a program, then a new directory is created with the
name of the program. In this directory all program modules will be saved with a
file extension .modx together with a description file with the same name as the
program and with the extension .pgf. The description file will include a list of all
modules contained in the program.

Syntax

Module declaration
<module declaration> ::=

MODULE <module name> [<module attribute list>]

<type definition list>

<data declaration list>

<routine declaration list>

ENDMODULE

<module name> ::= <identifier>

<module attribute list> ::= '(' <module attribute> { ',' <module
attribute> } ')'

<module attribute> ::=

SYSMODULE

| NOVIEW

| NOSTEPIN

| VIEWONLY

| READONLY

Note

If two or more attributes are used they must be in the above order, the NOVIEW

attribute can only be specified alone or together with the attribute SYSMODULE.

<type definition list> ::= { <type definition> }

<data declaration list> ::= { <data declaration> }

<routine declaration list> ::= { <routine declaration> }

Technical reference manual - RAPID overview 19
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.3 Modules

Continued

1.1.4 Predefined data

Introduction
In order to simplify programming, predefined data is supplied with the robot. This
data does not have to be created and, consequently, can be used directly.
If this data is used, initial programming is made easier. It is, however, usually better
to give your own names to the data you use, since this makes the program easier
for you to read.

Contents
There are five numerical data (registers) and one clock predefined.

DeclarationData typeName

VAR num reg1:=0numreg1

VAR num reg2:=0numreg2

VAR num reg3:=0numreg3

VAR num reg4:=0numreg4

VAR num reg5:=0numreg5

VAR clock clock1clockclock1

20 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.4 Predefined data

1.1.5 Routines

Introduction
There are three types of routines (subprograms): procedures, functions, and traps.

• Procedures do not return a value and are used in the context of instructions.
• Functions return a value of a specific type and are used in the context of

expressions.
• Trap routines provide a means of dealing with interrupts. A trap routine can

be associated with a specific interrupt and then, if that particular interrupt
occurs at a later stage, will automatically be executed. A trap routine can
never be explicitly called from the program.

Routine scope
The scope of a routine denotes the area in which the routine is visible. The optional
local directive of a routine declaration classifies a routine as local (within the
module), otherwise it is global.
Example:

LOCAL PROC local_routine (...

PROC global_routine (...

The following scope rules apply to routines:
• The scope of a global routine may include any module in the task.
• The scope of a local routine comprises the module in which it is contained.
• Within its scope, a local routine hides any global routine or data with the

same name.
• Within its scope, a routine hides instructions and predefined routines and

data with the same name.

xx1100000551

In the example above, the following routines can be called from Routine h:
• Module1: Routine c, d.
• Module2: All routines.

A routine may not have the same name as another routine, data, or data type in
the same module. A global routine may not have the same name as a module or
a global routine, global data or global data type in another module.

Continues on next page
Technical reference manual - RAPID overview 21
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines

Parameters
The parameter list of a routine declaration specifies the arguments (actual
parameters) that must/can be supplied when the routine is called.
There are four different types of parameters (in the access mode):

• Normally, a parameter is used only as an input and is treated as a routine
variable. Changing this variable will not change the corresponding argument.

• An INOUT parameter specifies that a corresponding argument must be a
variable (entire, element or component) or an entire persistent which can be
changed by the routine.

• A VAR parameter specifies that a corresponding argument must be a variable
(entire, element or component) which can be changed by the routine.

• A PERS parameter specifies that a corresponding argument must be an entire
persistent which can be changed by the routine.

If an INOUT, VAR or PERS parameter is updated, this means, in actual fact, that the
argument itself is updated, that is it makes it possible to use arguments to return
values to the calling routine.
Example:

PROC routine1 (num in_par, INOUT num inout_par,

VAR num var_par, PERS num pers_par)

A parameter can be optional and may be omitted from the argument list of a routine
call. An optional parameter is denoted by a backslash (\) before the parameter.
Example:

PROC routine2 (num required_par \num optional_par)

The value of an optional parameter that is omitted in a routine call may not be
referenced. This means that routine calls must be checked for optional parameters
before an optional parameter is used.
Two or more optional parameters may be mutually exclusive (that is declared to
exclude each other), which means that only one of them may be present in a routine
call. This is indicated by a stroke (pipe charachter, |) between the parameters in
question.
Example:

PROC routine3 (\num exclude1 | num exclude2)

The special type, switch, may (only) be assigned to optional parameters and
provides a means to use switch arguments, that is arguments that are only specified
by names (not values). A value cannot be transferred to a switch parameter. The
only way to use a switch parameter is to check for its presence using the
predefined function, Present.
Example:

PROC routine4 (\switch on | switch off)

...

IF Present (off) THEN

...

ENDPROC

Arrays may be passed as arguments. The degree of an array argument must comply
with the degree of the corresponding formal parameter. The dimension of an array

Continues on next page
22 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines
Continued

parameter is conformant (marked with *). The actual dimension thus depends on
the dimension of the corresponding argument in a routine call. A routine can
determine the actual dimension of a parameter using the predefined function,Dim.
Example:

PROC routine5 (VAR num pallet{*,*})

Routine termination
The execution of a procedure is either explicitly terminated by a RETURN instruction
or implicitly terminated when the end (ENDPROC, BACKWARD, ERROR, or UNDO) of
the procedure is reached.
The evaluation of a function must be terminated by a RETURN instruction.
The execution of a trap routine is explicitly terminated using the RETURN instruction
or implicitly terminated when the end (ENDTRAP, ERROR, or UNDO) of that trap routine
is reached. Execution continues from the point where the interrupt occurred.

Routine declarations
A routine can contain routine declarations (including parameters), data, a body, a
backward handler (only procedures), an error handler, and an undo handler. Routine
declarations cannot be nested, that is it is not possible to declare a routine within
a routine.

xx1100000553

Procedure declaration
For example, multiply all elements in a num array by a factor:

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO dim(array, 1) DO

array{index} := array{index} * factor;

ENDFOR

ENDPROC

Function declaration
A function can return any data type value, but not an array value.

Continues on next page
Technical reference manual - RAPID overview 23
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines

Continued

For example, return the length of a vector.
FUNC num veclen (pos vector)

RETURN Sqrt(Pow(vector.x,2)+Pow(vector.y,2)+Pow(vector.z,2));

ENDFUNC

Trap declaration
For example, respond to feeder empty interrupt:

TRAP feeder_empty

wait_feeder;

RETURN;

ENDTRAP

Procedure call
When a procedure is called, the arguments that correspond to the parameters of
the procedure shall be used:

• Mandatory parameters must be specified. They must also be specified in the
correct order.

• Optional arguments can be omitted.
• Conditional arguments can be used to transfer parameters from one routine

call to another.
See Using function calls in expressions on page 40.
The procedure name may either be statically specified by using an identifier (early
binding) or evaluated during runtime from a string type expression (late binding).
Even though early binding should be considered to be the normal procedure call
form, late binding sometimes provides very efficient and compact code. Late binding
is defined by putting percent signs before and after the string that denotes the
name of the procedure.
Example:

! early binding

TEST products_id

CASE 1:

proc1 x, y, z;

CASE 2:

proc2 x, y, z;

CASE 3:

...

! same example using late binding

% “proc” + NumToStr(product_id, 0) % x, y, z;

...

! same example again using another variant of late binding

VAR string procname {3} :=[“proc1”, “proc2”, “proc3”];

...

% procname{product_id} % x, y, z;

...

Note that the late binding is available for procedure calls only, and not for function
calls. If a reference is made to an unknown procedure using late binding, the system
variable ERRNO is set to ERR_REFUNKPRC. If a reference is made to a procedure

Continues on next page
24 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines
Continued

call error (syntax, not procedure) using late binding, the system variable ERRNO is
set to ERR_CALLPROC.

Syntax

Routine declaration
<routine declaration> ::=

[LOCAL] (<procedure declaration>

| <function declaration>

| <trap declaration>)

| <comment>

| <RDN>

Parameters
<parameter list> ::=

<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=

<parameter declaration>

| <optional parameter declaration>

| <PAR>

<next parameter declaration> ::=

',' <parameter declaration>

| <optional parameter declaration>

| ','<optional parameter declaration>

| ',' <PAR>

<optional parameter declaration> ::=

'\' (<parameter declaration> | <ALT>)

{ '|' (<parameter declaration> | <ALT>) }

<parameter declaration> ::=

[VAR | PERS | INOUT] <data type>

<identifier> ['{' ('*' { ',' '*' }) | <DIM>] '}'

| 'switch' <identifier>

Procedure declaration
<procedure declaration> ::=

PROC <procedure name>

'(' [<parameter list>] ')'

<data declaration list>

<instruction list>

[BACKWARD <instruction list>]

[ERROR <instruction list>]

[UNDO <instruction list>]

ENDPROC

<procedure name> ::= <identifier>

<data declaration list> ::= {<data declaration>}

Function declaration
<function declaration> ::=

FUNC <value data type>

<function name>

'(' [<parameter list>] ')'

<data declaration list>

Continues on next page
Technical reference manual - RAPID overview 25
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines

Continued

<instruction list>

[ERROR <instruction list>]

[UNDO <instruction list>]

ENDFUNC

<function name> ::= <identifier>

Trap routine declaration
<trap declaration> ::=

TRAP <trap name>

<data declaration list>

<instruction list>

[ERROR <instruction list>]

[UNDO <instruction list>]

ENDTRAP

<trap name> ::= <identifier>

Procedure call
<procedure call> ::= <procedure> [<procedure argument list>] ';'

<procedure> ::=

<identifier>

| '%' <expression> '%'

<procedure argument list> ::= <first procedure argument> {
<procedure argument> }

<first procedure argument> ::=

<required procedure argument>

| <optional procedure argument>

| <conditional procedure argument>

| <ARG>

<procedure argument> ::=

',' <required procedure argument>

| <optional procedure argument>

| ',' <optional procedure argument>

| <conditional procedure argument>

| ',' <conditional procedure argument>

| ',' <ARG>

<required procedure argument> ::= [<identifier> ':='] <expression>

<optional procedure argument> ::= '\' <identifier> [':='
<expression>]

<conditional procedure argument> ::= '\' <identifier> '?' (
<parameter> | <VAR>)

26 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.1.5 Routines
Continued

1.2 Program data

1.2.1 Data types

Introduction
There are three different kinds of data types:

• An atomic type is atomic in the sense that it is not defined based on any
other type and cannot be divided into parts or components, for example num.

• A record data type is a composite type with named, ordered components,
for example pos. A component may be of an atomic or record type.
A record value can be expressed using an aggregate representation, for
example [300, 500, depth] pos record aggregate value.
A specific component of a record data can be accessed by using the name
of that component, for example pos1.x := 300; assignment of the x-component
of pos1.

• An alias data type is by definition equal to another type. Alias types make it
possible to classify data objects.

Non-value data types
Each available data type is either a value data type or a non-value data type. Simply
speaking, a value data type represents some form of value. Non-value data cannot
be used in value-oriented operations:

• Initialization
• Assignment (:=)
• Equal to (=) and not equal to (<>) checks
• TEST instructions
• IN (access mode) parameters in routine calls
• Function (return) data types

The signal data types (signalai, signaldi, signalgi,signalao, signaldo, signalgo) are
of the data type semi value. These data can be used in value-oriented operations,
except initialization and assignment.
In the description of a data type it is only specified when it is a semi value or a
non-value data type.

Equal (alias) data types
An alias data type is defined as being equal to another type. Data with the same
data types can be substituted for one another.
Example:

VAR num level;

VAR dionum high:=1;

level:= high;

This is OK since dionum is an alias data type for num.

Continues on next page
Technical reference manual - RAPID overview 27
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.1 Data types

Syntax
<type definition>::=

[LOCAL] (<record definition>

| <alias definition>)

| <comment>

| <TDN>

<record definition>::=

RECORD <identifier>

<record component list>

ENDRECORD

<record component list> ::=

<record component definition> |

<record component definition> <record component list>

<record component definition> ::=

<data type> <record component name> ';'

<alias definition> ::=

ALIAS <data type> <identifier> ';'

<data type> ::= <identifier>

28 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.1 Data types
Continued

1.2.2 Data declarations

Introduction
There are three kinds of data:

• A variable can be assigned a new value during program execution.
• A persistent can be described as a persistent variable. This is accomplished

by letting an update of the value of a persistent automatically cause the
initialization value of the persistent declaration to be updated. (When a
program is saved the initialization value of any persistent declaration reflects
the current value of the persistent.)

• A constant represents a static value and cannot be assigned a new value.
A data declaration introduces data by associating a name (identifier) with a data
type. Except for predefined data and loop variables, all data used must be declared.

Data scope
The scope of data denotes the area in which the data is visible. The optional local
directive of a data declaration classifies data as local (within the module), otherwise
it is global. Note that the local directive may only be used at module level, not
inside a routine.

Example
LOCAL VAR num local_variable;

VAR num global_variable;

Program data
Data declared outside a routine is called program data. The following scope rules
apply to program data:

• The scope of predefined or global program data may include any module.
• The scope of local program data comprises the module in which it is

contained.
• Within its scope, local program data hides any global data or routine with

the same name (including instructions and predefined routines and data).
Program data may not have the same name as other data or a routine in the same
module. Global program data may not have the same name as other global data
or a routine in another module.

Routine data
Data declared inside a routine is called routine data. Note that the parameters of
a routine are also handled as routine data. The following scope rules apply to
routine data:

• The scope of routine data comprises the routine in which it is contained.
• Within its scope, routine data hides any other routine or data with the same

name.
Routine data may not have the same name as other data or a label in the same
routine.

Continues on next page
Technical reference manual - RAPID overview 29
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations

Example
In this example, the following data can be called from routine e:

• Module1: Data c, d.
• Module2: Data a, f, g, e1.

The following data can be called from routine h:
• Module1: Data d.
• Module2: Data a, f, g, h1, c.

xx1100000554

Variable declaration
A variable is introduced by a variable declaration and can be declared as global
(no prescript needed) or local.
Example:
MainModule is loaded into task T_ROB1.

MODULE MainModule

! The scope of this variable is within T_ROB1, i.e. it can be

! accessed from any module in T_ROB1.

VAR num global_var := 123;

! The scope of this variable is within this module.

LOCAL VAR num local_var := 789;

PROC main()

! The scope of this variable is within this procedure.

VAR num local_var2 := 321;

...

ENDPROC

ENDMODULE

A variable declared in a module that is installed shared can be declared with the
prescript TASK, see Technical reference manual - System parameters, topic
Controller, type Automatic Loading of Modules. Such a variable will be accessible

Continues on next page
30 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations
Continued

from all tasks but will have a unique value for each task. For example changing
the variables value from one task will have no affect for other tasks.
Example:
SharedModule is installed shared in the system.

MODULE SharedModule(SYSMODULE)

! This variable is accessible from all tasks, but has a

! unique value for each task.

TASK VAR num global_var := 123;

...

ENDMODULE

Using the TASK prescript in a module that is not installed shared will have no effect.
Variables of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.
Example:

VAR pos pallet{14, 18};

Variables with value types may be initialized (given an initial value). The expression
used to initialize a program variable must be constant. Note that the value of an
uninitialized variable may be used, but it is undefined, that is set to zero if it is a
num. A string is set to empty string, and a boolean is set to FALSE.
Example:

VAR string author_name := "John Smith";

VAR pos start := [100, 100, 50];

VAR num maxno{10} := [1, 2, 3, 9, 8, 7, 6, 5, 4, 3];

The initialization value is set when:
• the program/module is loaded.
• the program pointer is reset, for example program pointer to main.

Persistent declaration
Persistents can only be declared at module level, not inside a routine. Persistents
can be declared as system global (no prescript needed), task global, or local.
Example:
The following module is loaded into both T_ROB1 and T_ROB2.

MODULE MainModule

! The scope of this persistent is within the task it’s been

! loaded to. But, it will share the current value with any

! other task declaring the same persistent. I.e. changing the

! value in T_ROB1 will automatically change the value in T_ROB2.

PERS num globalpers := 123;

! The scope of this persistent is within the task this

! module has been loaded to.

TASK PERS num taskpers := 456;

! The scope of this persistent is within this module.

LOCAL PERS num localpers := 789;

Continues on next page
Technical reference manual - RAPID overview 31
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations

Continued

...

ENDMODULE

Local and task global persistents must be given an initialization value. For system
global persistents the initial value may be omitted. The initialization value must be
a single value (without data references or operands), or a single aggregate with
members which, in turn, are single values or single aggregates.
Example:

PERS pos refpnt := [100.23, 778.55, 1183.98];

Persistents of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.
Example:

PERS pos pallet{14, 18} := [...];

Note that if the current value of a persistent is changed, this causes the initialization
value (if not omitted) of the persistent declaration to be updated. However, due to
performance issues this update will not take place during program execution. The
initial value will be updated when the module is saved (Backup, Save Module, Save
Program). It will also be updated when editing program. The FlexPendant will
always show the current value of the persistent.
Example:

PERS num reg1 := 0;

...

reg1 := 5;

After module save, if the code was executed, the saved module looks like this:
PERS num reg1 := 5;

...

reg1 := 5;

Constant declaration
A constant is introduced by a constant declaration. The value of a constant cannot
be modified.
Example:

CONST num pi := 3.141592654;

A constant of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.

CONST pos seq{3} := [[614, 778, 1020], [914, 998, 1021], [814, 998,
1022]];

Initiating data
The initialization value for a constant or variable can be a constant expression.
The initialization value for a persistent can only be a literal expression.
Example:

CONST num a := 2;

CONST num b := 3;

!Correct syntax

CONST num ab := a + b;

Continues on next page
32 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations
Continued

VAR num a_b := a + b;

PERS num a__b := 5; !

!Faulty syntax

PERS num a__b := a + b;

In the table below, you can see what is happening in various activities such as
restart, new program, program start etc.

Start
program
(after
stop)

Start
program
(after
cycle)

Start
program
(Call
Routine)

Start
program
(Move
PP to
cursor)

Start
program
(Move
PP to
Routine)

Start
program
(Move
PP to
main)

Open,
Close or
Newpro-
gram

Power
on (Re-
start)

System
event af-
fects

Un-
changed

Un-
changed

Un-
changed

Un-
changed

InitInitInitUn-
changed

Constant

Un-
changed

Un-
changed

Un-
changed

Un-
changed

InitInitInitUn-
changed

Variable

Un-
changed

Un-
changed

Un-
changed

Un-
changed

Un-
changed

Un-
changed

Init i /
Un-
changed

Un-
changed

Persist-
ent

Un-
changed

Un-
changed

Un-
changed

Un-
changed

Disap-
pears

Disap-
pears

Disap-
pears

Re-
ordered

Com-
manded
inter-
rupts

Not runNot runNot runNot runNot runRunRun iiNot runStartup
routine
SYS_RE-
SET
(with mo-
tion set-
tings)

Un-
changed

Un-
changed

Un-
changed

Un-
changed

ClosesClosesClosesClosesFiles

Un-
changed

Un-
changed

Un-
changed

Disap-
pears

Disap-
pears

Disap-
pears

Disap-
pears

Recre-
ated at
power on

Path

i Persistents without initial value is only initialized if not already declared.
ii Generates an error when there is a semantic error in the actual task program.

Storage class
The storage class of a data object determines when the system allocates and
de-allocates memory for the data object. The storage class of a data object is
determined by the kind of data object and the context of its declaration and can
be either static or volatile.
Constants, persistents, and module variables are static, that is they have the same
storage during the lifetime of a task. This means that any value assigned to an
persistent or a module variable, always remains unchanged until the next
assignment.
Routine variables are volatile. The memory needed to store the value of a volatile
variable is allocated first upon the call of the routine in which the declaration of the
variable is contained. The memory is later de-allocated at the point of the return
to the caller of the routine. This means that the value of a routine variable is always

Continues on next page
Technical reference manual - RAPID overview 33
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations

Continued

undefined before the call of the routine and is always lost (becomes undefined) at
the end of the execution of the routine.
In a chain of recursive routine calls (a routine calling itself directly or indirectly)
each instance of the routine receives its own memory location for the same routine
variable - a number of instances of the same variable are created.

Syntax

Data declaration
<data declaration> ::=

[LOCAL] (<variable declaration>

| <persistent declaration>

| <constant declaration>)

| TASK <persistent declaration>

| <comment>

| <DDN>

Variable declaration
<variable declaration> ::=

VAR <data type> <variable definition> ';'

<variable definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

[':=' <constant expression>]

<dim> ::= <constant expression>

Persistent declaration
<persistent declaration> ::=

PERS <data type> <persistent definition> ';'

<persistent definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

[':=' <literal expression>]

Note

The literal expression may only be omitted for system global persistents.

Constant declaration
<constant declaration> ::=

CONST <data type> <constant definition> ';'

<constant definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

':=' <constant expression>

<dim> ::= <constant expression>

34 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.2.2 Data declarations
Continued

1.3 Expressions

1.3.1 Types of expressions

Description
An expression specifies the evaluation of a value. It can be used, for example:

for example: a:=3*b/c;in an assignment instruction

for example: IF a>=3 THEN ...as a condition in an IF instruction

for example: WaitTime time;as an argument in an instruction

for example: a:=Abs(3*b);as an argument in a function call

Arithmetic expressions
An arithmetic expression is used to evaluate a numeric value.
Example:

2*pi*radius

Result typeOperand typesOperationOperator

num inum + numaddition+

dnum idnum + numaddition+

same ii , i+num or +dnum or
+pos

unary plus; keep sign+

pospos + posvector addition+

num inum - numsubtraction-

dnum idnum - dnumsubtraction-

same ii, i-num or -posunary minus; change
sign

-

same ii, i-num or -dnum or -posunary minus; change
sign

-

pospos - posvector subtraction-

num inum * nummultiplication*

dnum idnum * dnummultiplication*

posnum * pos or pos *
num

scalar vector multiplic-
ation

*

pospos * posvector product*

orientorient * orientlinking of rotations*

numnum / numdivision/

dnumdnum / dnumdivision/

pospos / numscalar vector division/

numnum DIV numinteger divisionDIV iii

dnumdnum DIV dnuminteger divisionDIV iii

numnum MOD numinteger modulo; re-
mainder

MOD iii

Continues on next page
Technical reference manual - RAPID overview 35
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.1 Types of expressions

Result typeOperand typesOperationOperator

dnumdnum MOD dnuminteger modulo; re-
mainder

MOD iii

i Preserves integer (exact) representation as long as operands and result are kept within the integer
sub-domain of the numerical type.

ii The result receives the same type as the operand. If the operand has an alias data type, the result
receives the alias "base" type (num, dnum or pos).

iii Integer operations, for example 14 DIV 4=3, 14 MOD 4=2. (non-integer operands are illegal.)

Logical expressions
A logical expression is used to evaluate a logical value (TRUE/FALSE).
Example:

a>5 AND b=3

Result typeOperand typesOperationOperator

boolnum < numless than<

booldnum < dnumless than<

boolnum <= numless than or equal to<=

booldnum <= dnumless than or equal to<=

boolany i = anyequal to=

boolnum >= numgreater than or equal
to

>=

booldnum >= dnumgreater than or equal
to

>=

boolnum > numgreater than>

booldnum > dnumgreater than or equal
to

>

boolany <> anynot equal to<>

boolbool AND boolandAND

boolbool XOR boolexclusive orXOR

boolbool OR boolorOR

boolNOT boolunary not; negationNOT

i Only value data types. Operands must have equal types.

Continues on next page
36 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.1 Types of expressions
Continued

xx1100000555

String expressions
A string expression is used to carry out operations on strings.
Example: "IN" + "PUT" gives the result "INPUT"

Result typeOperand typesOperationOperator

stringstring + stringstring concatenation+

Technical reference manual - RAPID overview 37
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.1 Types of expressions

Continued

1.3.2 Using data in expressions

Introduction
An entire variable, persistent or constant can be a part of an expression.
Example:

2*pi*radius

Arrays
A variable, persistent or constant declared as an array can be referenced to the
whole array or a single element.
An array element is referenced using the index number of the element. The index
is an integer value greater than 0 and may not violate the declared dimension.
Index value 1 selects the first element. The number of elements in the index list
must fit the declared degree (1, 2 or 3) of the array.
Example:

VAR num row{3};

VAR num column{3};

VAR num value;

! get one element from the array

value := column{3};

! get all elements in the array

row := column;

Records
A variable, persistent or constant declared as a record can be referenced to the
whole record or a single component.
A record component is referenced using the component name.
Example:

VAR pos home;

VAR pos pos1;

VAR num yvalue;

..

! get the Y component only

yvalue := home.y;

! get the whole position

pos1 := home;

38 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.2 Using data in expressions

1.3.3 Using aggregates in expressions

Introduction
An aggregate is used for record or array values.
Example:

! pos record aggregate

pos := [x, y, 2*x];

! pos array aggregate

posarr := [[0, 0, 100], [0,0,z]];

Prerequisites
It must be possible to determine the data type of an aggregate the context. The
data type of each aggregate member must be equal to the type of the corresponding
member of the determined type.
Example (aggregate type pos - determined by p1):

VAR pos pl;

p1 :=[1, -100, 12];

Example of what is not allowed (not allowed since the data type of neither of the
aggregates can be determined by the context):

VAR pos pl;

IF [1, -100, 12] = [a,b,b,] THEN

Technical reference manual - RAPID overview 39
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.3 Using aggregates in expressions

1.3.4 Using function calls in expressions

Introduction
A function call initiates the evaluation of a specific function and receives the value
returned by the function.
Example:

Sin(angle)

Arguments
The arguments of a function call are used to transfer data to (and possibly from)
the called function. The data type of an argument must be equal to the type of the
corresponding parameter of the function. Optional arguments may be omitted but
the order of the (present) arguments must be the same as the order of the formal
parameters. In addition, two or more optional arguments may be declared to exclude
each other, in which case, only one of them may be present in the argument list.
A required (compulsory) argument is separated from the preceding argument by
a comma (,). The formal parameter name may be included or omitted.

DescriptionExample

Two required arguments, without or with the
parameter name.

Polar(3.937, 0.785398)

Polar(Dist:=3.937,
Angle:=0.785398)

One required argument, without or with one
switch.

Cosine(45)

Cosine(0.785398\Rad)

One required argument, without or with one op-
tional argument.

Dist(p2)

Dist(\distance:=pos1, p2)

An optional argument must be preceded by a backslash (\) and the formal parameter
name. A switch type argument is somewhat special; it may not include any argument
expression. Instead, such an argument can only be either present or not present.
Conditional arguments are used to support smooth propagation of optional
arguments through chains of routine calls. A conditional argument is considered
to be present if the specified optional parameter (of the calling function) is present,
otherwise it is simply considered to be omitted. Note that the specified parameter
must be optional.
Example:

PROC Read_from_file (iodev File \num Maxtime)

..

character:=ReadBin (File \Time?Maxtime);

! Max. time is only used if specified when calling the routine

! Read_from_file

..

ENDPROC

Continues on next page
40 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.4 Using function calls in expressions

Parameters
The parameter list of a function assigns an access mode to each parameter. The
access mode can be either in, inout, var, or pers:

• An IN parameter (default) allows the argument to be any expression. The
called function views the parameter as a constant.

• An INOUT parameter requires the corresponding argument to be a variable
(entire, array element or record component) or an entire persistent. The called
function gains full (read/write) access to the argument.

• A VAR parameter requires the corresponding argument to be a variable (entire,
array element or record component). The called function gains full (read/write)
access to the argument.

• A PERS parameter requires the corresponding argument to be an entire
persistent. The called function gains full (read/update) access to the argument.

Technical reference manual - RAPID overview 41
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.4 Using function calls in expressions

Continued

1.3.5 Priority between operators

Priority rules
The relative priority of the operators determines the order in which they are
evaluated. Parentheses provide a means to override operator priority. The rules
below imply the following operator priority:

OperatorsPriority

* / DIV MODHighest

+ -

< > <> <= >= =

AND

XOR OR NOTLowest

An operator with high priority is evaluated prior to an operator with low priority.
Operators of the same priority are evaluated from left to right.

CommentEvaluation orderExample expression

Left to right rule(a + b) + ca + b + c

* higher than +a + (b * c)a + b * c

Left to right rule(a OR b) OR ca OR b OR c

AND higher than OR(a AND b) OR (c AND d)a AND b OR c AND d

< higher than AND(a < b) AND (c < d)a < b AND c < d

42 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.5 Priority between operators

1.3.6 Syntax

Expressions
<expression> ::= <expr> | <EXP>

<expr> ::= [NOT] <logical term> { (OR | XOR) <logical term> }

<logical term> ::= <relation> { AND <relation> }

<relation> ::= <simple expr> [<relop> <simple expr>]

<simple expr> ::= [<addop>] <term> { <addop> <term> }

<term> ::= <primary> { <mulop> <primary> }

<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| '(' <expr> ')'

Operators
<relop> ::= '<' | '<=' | '=' | '>' | '>=' | '<>'

<addop> ::= '+' | '-'

<mulop> ::= '*' | '/' | DIV | MOD

Constant values
<literal> ::= <num literal>

| <string literal>

| <bool literal>

Data
<variable> ::=

<entire variable>

| <variable element>

| <variable component>

<entire variable> ::= <ident>

<variable element> ::= <entire variable> '{' <index list> '}'

<index list> ::= <expr> { ',' <expr> }

<variable component> ::= <variable> '.' <component name>

<component name> ::= <ident>

<persistent> ::=

<entire persistent>

| <persistent element>

| <persistent component>

<constant> ::=

<entire constant>

| <constant element>

| <constant component>

Aggregates
<aggregate> ::= '[' <expr> { ',' <expr> } ']'

Continues on next page
Technical reference manual - RAPID overview 43
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.6 Syntax

Function calls
<function call> ::= <function> '(' [<function argument list>]

')'

<function> ::= <ident>

<function argument list> ::= <first function argument> { <function
argument> }

<first function argument> ::=

<required function argument>

| <optional function argument>

| <conditional function argument>

<function argument> ::=

',' <required function argument>

| <optional function argument>

| ',' <optional function argument>

| <conditional function argument>

| ',' <conditional function argument>

<required function argument> ::= [<ident> ':='] <expr>

<optional function argument> ::= '\' <ident> [':=' <expr>]

<conditional function argument> ::= '\' <ident> '?' <parameter>

Special expressions
<constant expression> ::= <expression>

<literal expression> ::= <expression>

<conditional expression> ::= <expression>

Parameters
<parameter> ::=

<entire parameter>

| <parameter element>

| <parameter component>

44 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.3.6 Syntax
Continued

1.4 Instructions

Description
Instructions are executed in succession unless a program flow instruction or an
interrupt or error causes the execution to continue at some other place.
Most instructions are terminated by a semicolon (;). A label is terminated by a colon
(:). Some instructions may contain other instructions and are terminated by specific
keywords.

Termination wordInstruction

ENDIFIF

ENDFORFOR

ENDWHILEWHILE

ENDTESTTEST

Example:
WHILE index < 100 DO

.

index := index + 1;

ENDWHILE

Pick lists
All instructions are collected into specific groups, which are described in the
following sections. This grouping is the same as can be found in the pick lists used
when adding new instructions to a program on the FlexPendant.

Syntax
<instruction list> ::= { <instruction> }

<instruction> ::=

[<instruction according to separate chapter in this manual>

| <SMT>

Technical reference manual - RAPID overview 45
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.4 Instructions

1.5 Controlling the program flow

Introduction
The program is executed sequentially as a rule, that is instruction by instruction.
Sometimes, instructions which interrupt this sequential execution and call another
instruction are required to handle different situations that may arise during
execution.

Programming principles
The program flow can be controlled according to five different principles:

• By calling another routine (procedure) and, when that routine has been
executed, continuing execution with the instruction following the routine call.

• By executing different instructions depending on whether or not a given
condition is satisfied.

• By repeating a sequence of instructions a number of times or until a given
condition is satisfied.

• By going to a label within the same routine.
• By stopping program execution.

Calling another routine

Used toInstruction

Call (jump to) another routineProcCall

Call procedures with specific namesCallByVar

Return to the original routineRETURN

Program control within the routine

Used toInstruction

Execute one instruction only if a condition is satisfiedCompact IF

Execute a sequence of different instructions depending on
whether or not a condition is satisfied

IF

Repeat a section of the program a number of timesFOR

Repeat a sequence of instructions as long as a given condition
is satisfied

WHILE

Execute different instructions depending on the value of an
expression

TEST

Jump to a labelGOTO

Specify a label (line name)label

Terminate the smallest enclosing loop, for example, a While
loop

Break

Skip the rest of the loop and start the next iteration of the loopContinue

Continues on next page
46 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.5 Controlling the program flow

Stopping program execution

Used toInstruction

Stop program executionStop

Stop program execution when a program restart is not allowedEXIT

Stop program execution temporarily for debugging purposesDebugBreak

Stop program execution and robot movementSystemStopAction

Stop current cycle

Used toInstruction

Stop the current cycle and move the program pointer to the
first instruction in the main routine.

ExitCycle

When the execution mode CONT is selected, execution will
continue with the next program cycle.

Technical reference manual - RAPID overview 47
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.5 Controlling the program flow

Continued

1.6 Various instructions

Introduction
Various instructions are used to

• assign values to data
• wait a given amount of time or wait until a condition is satisfied
• insert a comment into the program
• load program modules.

Assigning a value to data
Data can be assigned an arbitrary value. It can, for example, be initialized with a
constant value, for example 5, or updated with an arithmetic expression, for example
reg1+5*reg3.

Used toInstruction

Assign a value to data:=

Wait
The robot can be programmed to wait a given amount of time, or to wait until an
arbitrary condition is satisfied; for example, to wait until an input is set.

Used toInstruction

Wait a given amount of time or to wait until the robot stops
moving

WaitTime

Wait until a condition is satisfiedWaitUntil

Wait until a digital input is setWaitDI

Wait until a digital output is setWaitDO

Comments
Comments are only inserted into the program to increase its readability. Program
execution is not affected by a comment.

Used toInstruction

Comment on the program. A line starting with ! (exclamation
mark) is a comment and is discarded by the program execution.

!

Loading program modules
Program modules can be loaded from mass memory or erased from the program
memory. In this way large programs can be handled with only a small memory.

Used toInstruction

Load a program module into the program memoryLoad

Unload a program module from the program memoryUnLoad

Load a program module into the program memory during exe-
cution

StartLoad

Connect the module, if loaded with StartLoad, to the program
task

WaitLoad

Continues on next page
48 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.6 Various instructions

Used toInstruction

Cancel the loading of a module that is being or has been loaded
with the instruction StartLoad

CancelLoad

Check program referencesCheckProgRef

Save a program moduleSave

Erase a module from the program memoryEraseModule

Used toData type

Program a load sessionloadsession

Various functions

Used toInstruction

Test if data object is a valid integerTryInt

Used toFunction

Read the current operating mode of the robotOpMode

Read the current program execution mode of the robotRunMode

Read the current Non-Motion execution mode of the program
task

NonMotionMode

Obtain the dimensions of an arrayDim

Find out whether an optional parameter was present when a
routine call was made

Present

Return the data type name for a specified variableType

Check whether a parameter is a persistentIsPers

Check whether a parameter is a variableIsVar

Basic data

Used to defineData type

Logical data (with the values true or false)bool

Numeric values (decimal or integer)num

Numeric values (decimal or integer). Data type with larger range
than num.

dnum

Character stringsstring

Routine parameters without valueswitch

Conversion function

Used toFunction

Convert a byte to a string data with a defined byte data format.ByteToStr

Convert a string with a defined byte data format to a byte data.StrToByte

Technical reference manual - RAPID overview 49
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.6 Various instructions

Continued

1.7 Motion settings

Introduction
Some of the motion characteristics of the robot are determined using logical
instructions that apply to all movements:

• Maximum TCP speed
• Maximum velocity and velocity override
• Acceleration
• Management of different robot configurations
• Payload
• Behavior close to singular points
• Program displacement
• Soft servo
• Tuning values
• Activation and deactivation of event buffer
• Suppress corner path warnings

Programming principles
The basic characteristics of the robot motion are determined by data specified for
each positioning instruction. Some data, however, is specified in separate
instructions which apply to all movements until that data changes.
The general motion settings are specified using a number of instructions, but can
also be read using the system variable C_MOTSET or C_PROGDISP.
Default values are automatically set (by executing the routine SYS_RESET in system
module BASE_SHARED)

• when using the restart mode Reset system,
• when a new program is loaded,
• when the program is started from the beginning.

Maximum TCP speed Function

Used toFunction

Return the maximum TCP speed for the used robot typeMaxRobSpeed

Defining velocity
The absolute velocity is programmed as an argument in the positioning instruction.
In addition to this, the maximum velocity and velocity override (a percentage of
the programmed velocity) can be defined.
A limitation of the speed can also be set, and it is later on limited when a system
input signal is set.

Used to defineInstruction

The maximum velocity and velocity overrideVelSet

Update speed override for ongoing movementSpeedRefresh

Continues on next page
50 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.7 Motion settings

Used to defineInstruction

Set speed limitation for an axis. It is later on applied by a sys-
tem input signal.

SpeedLimAxis

Set speed limitation for check points. It is later on applied by
a system input signal.

SpeedLimCheckPoint

Defining acceleration
When fragile parts, for example, are handled, the acceleration can be reduced for
part of the program.

Used toInstruction

Define the maximum acceleration.AccSet

Limiting the acceleration/deceleration of the tool (and gripload)
in the world coordinate system.

WorldAccLim

Set or reset limitations on TCP acceleration and/or TCP decel-
eration along the movement path.

PathAccLim

Defining configuration management
The robot's configuration is normally checked during motion. If joint (axis-by-axis)
motion is used, the correct configuration will be achieved. If linear or circular motion
are used, the robot will always move towards the closest configuration, but a check
is performed to see if it is the same as the programmed one. It is possible to change
this, however.

Used toInstruction

Configuration control on/off during joint motionConfJ

Configuration check on/off during linear motionConfL

Defining the payload
To achieve the best robot performance, the correct payload must be defined.

Used to defineInstruction

Define the payload of the gripperGripLoad

Defining the behavior near singular points
The robot can be programmed to avoid singular points by changing the tool
orientation automatically.

Used to defineInstruction

Define the interpolation method through singular pointsSingArea

Activation and deactivation of event buffer
To achieve the best robot performance and good application behavior when
combining an application using finepoints and a continous application where signals
needs to be set in advance due to slow process equipment, the event buffer can
be activated and deactivated.

Used to defineInstruction

Activate the configured event bufferActEventBuffer

Continues on next page
Technical reference manual - RAPID overview 51
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.7 Motion settings

Continued

Used to defineInstruction

Deactivate the use of the event bufferDeactEventBuffer

Suppress corner path warnings
To avoid warning messages on the FlexPendant when a corner path failure occurs,
these warnings can be activated and deactivated.

Used to defineInstruction

Suppress or enable corner path warningsCornerPathWarning

Displacing a program
When part of the program must be displaced, for example following a search, a
program displacement can be added.

Used toInstruction

Activate program displacementPDispOn

Activate program displacement by specifying a valuePDispSet

Deactivate program displacementPDispOff

Activate an additional axis offsetEOffsOn

Activate an additional axis offset by specifying a valueEOffsSet

Deactivate an additional axis offsetEOffsOff

Used toFunction

Calculate a program displacement from three positionsDefDFrame

Calculate a program displacement from six positionsDefFrame

Remove program displacement from a positionORobT

Define a frame from original positions and displaced positionsDefAccFrame

Soft servo
One or more of the robot axes can be made “soft”. When using this function, the
robot will be compliant and can replace, for example, a spring tool.

Used toInstruction

Activate the soft servo for one or more axesSoftAct

Deactivate the soft servoSoftDeact

Adjust the robot tuning values
In general, the performance of the robot is self-optimising; however, in certain
extreme cases, overrunning, for example, can occur. You can adjust the robot
tuning values to obtain the required performance.

Used toInstruction

Adjust the robot tuning valuesTuneServo

Reset tuning to normalTuneReset

Adjust the geometric path resolutionPathResol

Continues on next page
52 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.7 Motion settings
Continued

Used toInstruction

Choose the way the tool reorientates during circular interpola-
tion.

CirPathMode

Used toData type

Represent the tuning type as a symbolic constanttunetype

World zones
Up to 10 different volumes can be defined within the working area of the robot.
These can be used for:

• Indicating that the robot’s TCP is a definite part of the working area.
• Delimiting the working area for the robot and preventing a collision with the

tool.
• Creating a working area common to two robots. The working area is then

available only to one robot at a time.
The instructions in the table below are only available when the robot is equipped
with the option World Zones.

Used toInstruction

Define a box-shaped global zoneWZBoxDef

Define a cylindrical global zoneWZCylDef

Define a spherical global zoneWZSphDef

Define a global zone in joints coordinatesWZHomeJointDef

Define a global zone in joints coordinates for limitation of
working area.

WZLimJointDef

Activate limit supervision for a global zoneWZLimSup

Activate global zone to set digital outputsWZDOSet

Deactivate supervision of a temporary global zoneWZDisable

Activate supervision of a temporary global zoneWZEnable

Erase supervision of a temporary global zoneWZFree

Identify a temporary global zonewztemporary

Identify a stationary global zonewzstationary

Describe the geometry of a global zoneshapedata

Various for motion settings

Used toInstruction

Wait until the robot and additional axis have reached stop point
or have zero speed.

WaitRob

Used toData type

Motion settings except program displacementmotsetdata

Program displacementprogdisp

Technical reference manual - RAPID overview 53
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.7 Motion settings

Continued

1.8 Motion

Principle for robot movement
The robot movements are programmed as pose-to-pose movements, that is move
from the current position to a new position. The path between these two positions
is then automatically calculated by the robot.

Programming principles
The basic motion characteristics, such as the type of path, are specified by choosing
the appropriate positioning instruction. The remaining motion characteristics are
specified by defining data which are arguments of the instruction.

• Position data (end position for robot and additional axes)
• Speed data (desired speed)
• Zone data (position accuracy)
• Tool data (for example the position of the TCP)
• Work object data (for example the current coordinate system)

Some of the motion characteristics of the robot are determined using logical
instructions which apply to all movements (see Motion settings on page 50):

• Maximum velocity and velocity override
• Acceleration
• Management of different robot configurations
• Payload
• Behavior close to singular points
• Program displacement
• Soft servo
• Tuning values
• Activation and deactivation of event buffer

Both the robot and the additional axes are positioned using the same instructions.
The additional axes are moved at a constant velocity, arriving at the end position
at the same time as the robot.

Positioning instructions

Type of movementInstruction

TCP moves along a circular path.MoveC

Joint movement.MoveJ

TCP moves along a linear path.MoveL

Absolute joint movement.MoveAbsJ

Absolute linear movement.MoveAbsL

Moves a linear or rotational additional axis without TCP.MoveExtJ

Moves the robot circularly and sets analog output in the cornerMoveCAO

Moves the robot circularly and sets a digital output in the middle
of the corner path.

MoveCDO

Continues on next page
54 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion

Type of movementInstruction

Moves the robot circularly and set a group output signal in the
corner

MoveCGO

Moves the robot by joint movement and sets analog output in
the corner

MoveJAO

Moves the robot by joint movement and sets a digital output
in the middle of the corner path.

MoveJDO

Moves the robot by joint movement and set a group output
signal in the corner

MoveJGO

Moves the robot linearly and sets analog output in the cornerMoveLAO

Moves the robot linearly and sets a digital output in the middle
of the corner path.

MoveLDO

Moves the robot linearly and sets group output signal in the
corner

MoveLGO

Moves the robot circularly and executes a RAPID procedure.MoveCSync

Moves the robot by joint movement and executes a RAPID
procedure.

MoveJSync

Moves the robot linearly and executes a RAPID procedure.MoveLSync

Searching
During the movement, the robot can search for the position of a work object, for
example. The searched position (indicated by a sensor signal) is stored and can
be used later to position the robot or to calculate a program displacement.

Type of movementInstruction

TCP along a circular path.SearchC

TCP along a linear path.SearchL

Joint movement of mechanical unit without TCP.SearchExtJ

Activating outputs or interrupts at specific positions
Normally, logical instructions are executed in the transition from one positioning
instruction to another. If, however, special motion instructions are used, these can
be executed instead when the robot is at a specific position.

Used toInstruction

Absolute joint robot movements with eventsTriggAbsJ

Run the robot (TCP) circularly with an activated trigg condition.TriggC

Define an I/O check at a given positionTriggCheckIO

Define a trigg condition to set an output at a given position with
the possibility to include time compensation for the lag in the
external equipment.

TriggEquip

Copy the content in a triggdata variableTriggDataCopy

Reset the content in a triggdata variableTriggDataReset

Define a trigg condition to ramp up or down analog output
signal at a given position with the possibility to include time
compensation for the lag in the external equipment.

TriggRampAO

Continues on next page
Technical reference manual - RAPID overview 55
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Used toInstruction

Run the robot axis-by-axis with an activated trigg condition.TriggJ

Run the robot (TCP) axis-by-axis with an activated I/O trigg
condition.

TriggJIOs

Define a trigg condition to execute a trap routine at a given
position

TriggInt

Define a trigg condition to set an output at a given positionTriggIO

Run the robot (TCP) linearly with an activated trigg condition.TriggL

Run the robot (TCP) linearly with an activated I/O trigg condi-
tion.

TriggLIOs

Move backwards on its path in a RESTART event routine.StepBwdPath

Create an internal supervision process in the system for zero
setting of specified process signals and the generation of re-
start data in a specified persistent variable at every program
stop (STOP) or emergency stop (QSTOP) in the system.

TriggStopProc

Used toFunctions

Check if the content in a triggdata variable is validTriggDataValid

Used toData types

Trigg conditionstriggdata

Analog I/O trigger conditionaiotrigg

Data for TriggStopProcrestartdata

Trigg conditions for TriggJIOs and TriggLIOstriggios

Trigg conditions for TriggJIOs and TriggLIOstriggstrgo

Trigg conditions for TriggJIOs and TriggLIOstriggiosdnum

Control of analog output signal proportional to actual TCP

Used toInstruction

Define conditions and actions for control of an analog output
signal with output value proportional to the actual TCP speed.

TriggSpeed

Motion control if an error/interrupt takes place
To rectify an error or an interrupt, motion can be stopped temporarily and then
restarted again.

Used toInstruction

Define conditions and actions for control of an analog output
signal with output value proportional to the actual TCP speed.

StopMove

Restart the robot movementsStartMove

Restart the robot movements and make a retry in one indivisible
sequence

StartMoveRetry

Reset the stop move status, but don’t start the robot move-
ments

StopMoveReset

Store the last path generatedStorePath

Continues on next page
56 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Used toInstruction

Regenerate a path stored earlierRestoPath

Clear the whole motion path on the current motion path level.ClearPath

Get the current path level.PathLevel

Suspend synchronized coordinated movements on StorePath
level.

SyncMoveSuspend i

Resume synchronized coordinated movements on StorePath
level

SyncMoveResume i

i If the robot is equipped with the option MultiMove Coordinated.

Used toFunction

Get status of the stop move flags.IsStopMoveAct

Get robot info in a MultiMove system
Used to retrieve name or reference to the robot in current program task.

Used toFunction

Get the controlled robot name in current program task, if any.RobName

Used toData

Get data containing a reference to the controlled robot in cur-
rent program task, if any.

ROB_ID

Controlling additional axes
The robot and additional axes are usually positioned using the same instructions.
Some instructions, however, only affect the additional axis movements.

Used toInstruction

Deactivate an external mechanical unitDeactUnit

Activate an external mechanical unitActUnit

Define a payload for a mechanical unitMechUnitLoad

Read the least torque marginGetTorqueMargin

Reset least torque marginResetTorqueMargin

Used toFunction

Read the current torque of the robot and external axes motors,
and can be used to detect if a servo gripper holds a load or
not.

GetMotorTorque

Retrieve the name and data for mechanical unitsGetNextMechUnit

Check whether a mechanical unit is activated or notIsMechUnitActive

Continues on next page
Technical reference manual - RAPID overview 57
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Independent axes
The robot axis 6 (and 4 on IRB 1600, 2600 and 4600 except ID versions) or an
additional axis can be moved independently of other movements. The working
area of an axis can also be reset, which will reduce the cycle times.
The instructions in the table below are only available when the robot is equipped
with the option Independent Axis.

Used toInstruction

Change an axis to independent mode and move the axis to an
absolute position.

IndAMove

Change an axis to independent mode and start the axis moving
continuously.

IndCMove

Change an axis to independent mode and move the axis a
delta distance.

IndDMove

Change an axis to independent mode and move the axis to a
relative position (within the axis revolution).

IndRMove

Change an axis to dependent mode or/and reset the working
area.

IndReset

Reset the position of the wrist joints on hollow wrist manipulat-
ors, such as IRB 5402 and IRB 5403.

HollowWristReset i

i Can only be used on IRB 5402 and IRB 5403.
The functions in the table below are only available when the robot is equipped with
the option Independent Axis.

Used toFunction

Check whether an independent axis is in position.IndInpos

Check whether an independent axis has reached programmed
speed.

IndSpeed

Path correction
The instructions, functions, and data types in the tables below are only available
when the robot is equipped with the options Path Corrections or RobotWare-Arc
sensor.

Used toInstruction

Check whether an independent axis is in positionCorrCon

Check whether an independent axis has reached programmed
speed

CorrWrite

Disconnect from a previously connected correction generatorCorrDiscon

Remove all connected correction generatorsCorrClear

Used toFunction

Read the total corrections delivered by all connected correction
generators

CorrRead

Used toData type

Add geometric offsets in the path coordinate systemcorrdescr

Continues on next page
58 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Path Recorder
The instructions, functions, and data types in the tables below are only available
when the robot is equipped with the option Path Recovery.

Used toInstruction

Start recording the robot’s pathPathRecStart

Stop recording the robot’s pathPathRecStop

Move the robot backwards along a recorded pathPathRecMoveBwd

Move the robot back to the position where PathRecMoveBwd
was executed

PathRecMoveFwd

Used toFunction

Check if the path recorder is active and if a recorded backward
path is available

PathRecValidBwd

Check if the path recorder can be used to move forwardPathRecValidFwd

Used toData type

Identify a breakpoint for the path recorderpathrecid

Conveyor tracking
The instructions in the table below are only available when the robot is equipped
with the option Conveyor tracking.

Used toInstruction

Wait for work object on conveyorWaitWObj

Drop work object on conveyorDropWObj

Servo Tracking for Indexing Conveyor
The instructions in the table below are only available when the robot is equipped
with the option Conveyor tracking.

Used toInstruction

Used to manually add an object to the object queue.IndCnvAddObject

Start to listen to the digital input and execute an indexing
movement when triggered.

IndCnvEnable

The system stop listen to the digital input.IndCnvDisable

Set up the indexed conveyor functionalityIndCnvInit

To be able to jog or execute a move instruction for the indexing
conveyor the system needs to be set to Normal Mode, and that
is done with this instruction, or when moving PP to main.

IndCnvReset

Used to setup the behavior of the indexing conveyor function-
ality.

indcnvdata

Load identification and collision detection

Used toInstruction

Deactivate/activate motion supervisionMotionSup i

Valid robot position for parameter identificationParIdPosValid

Continues on next page
Technical reference manual - RAPID overview 59
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Used toInstruction

Valid robot type for parameter identificationParIdRobValid

Load identification of tool or payloadLoadId

Load identification of external manipulatorManLoadId

i Only if the robot is equipped with the option Collision Detection.

Used toData type

Represent an integer with a symbolic constantloadidnum

Represent an integer with a symbolic constantparidnum

Represent an integer with a symbolic constantparidvalidnum

Position functions

Used toFunction

Add an offset to a robot position, expressed in relation to the
work object

Offs

Add an offset, expressed in the tool coordinate systemRelTool

Calculates robtarget from jointtargetCalcRobT

Read the current position (only x, y, z of the robot)CPos

Read the current position (the complete robtarget)CRobT

Read the current joint anglesCJointT

Read the current motor anglesReadMotor

Read the current tooldata valueCTool

Read the current wobjdata valueCWObj

Remove a program displacement from a positionORobT

Mirror a positionMirPos

Calculate joint angles from robtargetCalcJointT

The distance between two positionsDistance

Check interrupted path after power failure

Used toFunction

Check if the path has been interrupted at power failure.PFRestart

Status functions

Used toFunction

Read the speed override set by the operator from the Program
Editor or Production Window.

CSpeedOverride

Motion data
Motion data is used as an argument in the positioning instructions.

Used to defineData type

The end positionrobtarget

Continues on next page
60 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

Used to defineData type

The end position for a MoveAbsJ/L, MoveExtJ, or TriggAbsJ
instruction

jointtarget

The speedspeeddata

The accuracy of the position (stop point or fly-by point)zonedata

The tool coordinate system and the load of the tooltooldata

The work object coordinate systemwobjdata

The termination of the positionstoppointdata

A number used to control synchronizing of two or more coordin-
ated synchronized movement with each other

identno

Basic data for movements

Used to defineData type

A position (x, y, z)pos

An orientationorient

A coordinate system (position + orientation)pose

The configuration of the robot axesconfdata

The position of the additional axesextjoint

The position of the robot axesrobjoint

A loadloaddata

An external mechanical unitmecunit

Related information

Described inOptions

Application manual - Controller software OmniCoreCollision Detection
Independent Axis
Path Recovery

Application manual - Conveyor trackingConveyor tracking

Application manual - MultiMoveMultiMove

Technical reference manual - RAPID overview 61
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.8 Motion
Continued

1.9 Input and output signals

Signals
The robot can be equipped with a number of digital and analog user signals that
can be read and changed from within the program.

Programming principles
The signal names are defined in the system parameters. These names are always
available in the program for reading or setting I/O operations.
The value of an analog signal, a digital signal, or a group of digital signals is
specified as a numeric value. For an analog signal and a digital signal the numeric
value is of the type num. For a digital group signal the numeric value is of the type
dnum.

Changing the value of a signal

Used to defineInstruction

Invert the value of a digital output signalInvertDO

Generate a pulse on a digital output signalPulseDO

Reset a digital output signal (to 0)Reset

Set a digital output signal (to 1)Set

Change the value of an analog output signalSetAO

Change the value of a digital output signal (symbolic value; for
example high/low)

SetDO

Change the value of a group of digital output signalsSetGO

Reading the value of input signals
The value of an input signal can be read directly in the program, for example:

VAR num mynum;

VAR dnum mydnum;

! Digital input

IF di1 = 1 THEN ...

mynum:=di1;

! Digital group input

IF gi1 = 5 THEN ...

mydnum:=gi1;

! Analog input

IF ai1 > 5.2 THEN ...

mynum:=ai1;

The following recoverable errors can be generated. The errors can be handled in
an error handler. The system variable ERRNO will be set to:
ERR_NO_ALIASIO_DEF if the signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O configuration with instruction
AliasIO.
ERR_NORUNUNIT if there is no contact with the I/O unit.

Continues on next page
62 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.9 Input and output signals

ERR_SIG_NOT_VALID if the I/O signal cannot be accessed (only valid for ICI field
bus).

Reading the value of output signals
The value of an output signal can be read directly in the program, for example:

! Digital output

IF do1 = 1 THEN ...

! Digital group output

IF go1 = 5 THEN ...

! Analog output

IF ao1 > 5.2 THEN ...

The following recoverable errors can be generated. The errors can be handled in
an error handler. The system variable ERRNO will be set to:
ERR_NO_ALIASIO_DEF if the signal variable is a variable declared in RAPID. It has
not been connected to an I/O signal defined in the I/O configuration with instruction
AliasIO.
ERR_NORUNUNIT if there is no contact with the I/O unit.
ERR_SIG_NOT_VALID if the I/O signal cannot be accessed (only valid for ICI
fieldbus).

Testing input or output signals

Used to defineInstruction

Wait until a digital input is set or resetWaitDI

Wait until a digital output is set on resetWaitDO

Wait until a group of digital input signals is set to a valueWaitGI

Wait until a group of digital output signals is set to a valueWaitGO

Wait until a analog input is less or greather then a valueWaitAI

Wait until a analog output is less or greather then a valueWaitAO

Used to defineFunction

Test whether a digital input is setTestDI

Valid I/O signal to accessValidIO

Get information about the origin of an I/O signalGetSignalOrigin

Used to defineData type

Define the I/O signal originsignalorigin

Activating and deactivating I/O modules
I/O modules are automatically activated at start-up, but they can be deactivated
during program execution and re-activated later.

Used to defineInstruction

Activate an I/O moduleIOActivate

Deactivate an I/O moduleIODeactivate

Continues on next page
Technical reference manual - RAPID overview 63
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.9 Input and output signals

Continued

Mute and unmute I/O modules
I/O modules are unmuted at start-up, but they can be muted, to prevent I/O event
messages from being cast, during program execution.

Used to defineInstruction

Mute I/O event messages from the device.IODeviceMute

Defining input and output signals

Used to defineInstruction

Define a signal with an alias nameAliasIO

Used to defineData type

The symbolic value of a digital signaldionum

The name of an analog input signalsignalai

The name of an analog output signalsignalao

The name of a digital input signalsignaldi

The name of a digital output signalsignaldo

The name of a group of digital input signalssignalgi

The name of a group of digital output signalssignalgo

Define the I/O signal originsignalorigin

Get status of I/O network and device

Used to defineFunction

Returns current status of the I/O deviceIODeviceState

Returns current status of the I/O networkIONetworkState

Used to defineData type

The status of the I/O deviceiodevice_state

The status of the I/O networkionetwork_state

Read group signal information

Used to defineInstruction

Read information about a digital group signal.GetGroupSignalInfo

64 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.9 Input and output signals
Continued

1.10 Communication

Communicating via I/O devices and files
There are four possible ways to communicate via I/O devices and files:

• Messages can be output to the FlexPendant display and the user can answer
questions, such as about the number of parts to be processed.

• Character-based information can be written to or read from text files in mass
memory. In this way, for example, production statistics can be stored and
processed later in a PC. Information can also be printed directly on a printer
connected to the robot.

• Binary information can be transferred between the robot and a sensor, for
example.

• Binary information can be transferred between the robot and another
computer, for example, with a link protocol.

Programming principles
The decision whether to use character-based or binary information depends on
how the equipment with which the robot communicates handles that information.
A file, for example, can have data that is stored in character-based or binary form.
If communication is required in both directions simultaneously, binary transmission
is necessary.
Each I/O device or file used must first be opened. On doing this, the device/file
receives a descriptor that is then used as a reference when reading/writing. The
FlexPendant can be used at all times and does not need to be opened.
Both text and the value of certain types of data can be printed.

Communicating using the FlexPendant, function group TP

Used toInstruction

Clear the FlexPendant operator displayTPErase

Write text on the FlexPendant operator displayTPWrite

Write text on the FlexPendant display and simultaneously store
that message in the program error log.

ErrWrite

Label the function keys and to read which key is pressedTPReadFK

Read a numeric value from the FlexPendantTPReadDnum

Read a numeric value from the FlexPendantTPReadNum

Choose a window on the FlexPendant from RAPIDTPShow

Represent FlexPendant window with a symbolic constanttpnum

Communicating using the FlexPendant, function group UI

Used toInstruction

Write message to FlexPendantUIMsgBox

Read pressed button from FlexPendant
Type basic

Continues on next page
Technical reference manual - RAPID overview 65
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.10 Communication

Used toFunction

Write message to FlexPendantUIMessageBox

Read pressed button from FlexPendant
Type advanced

Read a numeric value from the FlexPendantUIDnumEntry

Tune a numeric value from the FlexPendantUIDnumTune

Read a numeric value from the FlexPendantUINumEntry

Tune a numeric value from the FlexPendantUINumTune

Read text from the FlexPendantUIAlphaEntry

Select item in a list from the FlexPendantUIListView

Is the FlexPendant connected to the systemUIClientExist

Used toData type

Represent icon with a symbolic constanticondata

Represent button with a symbolic constantbuttondata

Define menu list itemslistitem

Represent selected button with a symbolic constantbtnres

Reading from or writing to a character-based I/O device or file

Used toInstruction

Open a channel/file for reading or writingOpen

Write text to the channel/fileWrite

Close the channel/fileClose

Used toFunction

Read a numeric valueReadNum

Read a text stringReadStr

Communicating using binary I/O devices or files

Used toInstruction

Open an I/O device or file for binary transfer of dataOpen

Write to a binary I/O device or fileWriteBin

Write to any binary I/O device or fileWriteAnyBin

Write a string to a binary I/O device or fileWriteStrBin

Set the file position to the beginning of the fileRewind

Close the I/O device or fileClose

Read from any binary I/O device or fileReadAnyBin

Write data of type rawbytes to a binary I/O device or fileWriteRawBytes

Read data of type rawbytes from a binary I/O device or fileReadRawBytes

Continues on next page
66 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.10 Communication
Continued

Used toFunction

Read from a binary I/O device or fileReadBin

Read a string from a binary I/O device or fileReadStrBin

Communication using rawbytes
The instructions and functions below are used to support the communication
instructions WriteRawBytes and ReadRawBytes.

Used toInstruction

Set a rawbytes variable to zeroClearRawBytes

Copy from one rawbytes variable to anotherCopyRawBytes

Pack the contents of a variable into a container of type rawbytesPackRawBytes

Unpack the contents of a container of type rawbytes to a vari-
able

UnPackRawBytes

Pack the header of a DeviceNet message into a container of
rawbytes

PackDNHeader

Used toFunction

Get the current length of valid bytes in a rawbyte variableRawBytesLen

Data for I/O devices or files

Used to defineData type

A reference to an I/O device or a file, which can then be used
for reading and writing

iodev

A general data container, used for communication with I/O
devices

rawbytes

Communicating using sockets

Used toInstruction

Create a new socketSocketCreate

Connect to remote computer (only client applications)SocketConnect

Send data to remote computerSocketSend

Send data to remote computerSocketSendTo

Receive data from remote computerSocketReceive

Receive data from remote computerSocketReceiveFrom

Close the socketSocketClose

Bind a socket to a port (only server applications)SocketBind

Listen for connections (only server applications)SocketListen

Accept connections (only server applications)SocketAccept

Used toFunction

Get current socket stateSocketGetStatus

Test for the presence of data on a socketSocketPeek

Continues on next page
Technical reference manual - RAPID overview 67
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.10 Communication

Continued

Used to defineData type

Socket devicesocketdev

Socket statussocketstatus

Communication using RAPID Message Queues

Used to defineData type

The rmqheader is a part of the data type rmqmessage and is
used to describe the message

rmqheader i

A general data container, used when communicate with RAPID
Message Queue functionality

rmqmessage

Identity number of a RAPID task or SDK clientrmqslot

Order and enable interrupts for a specific data typeIRMQMessage

Find the identity number of the queue configured for a RAPID
task or SDK client

RMQFindSlot

Get the first message from the queue of this taskRMQGetMessage

Extract the data from a messageRMQGetMsgData

Extract header information from a messageRMQGetMsgHeader

Send data to the queue of the queue configured for a RAPID
task or SDK client

RMQSendMessage

Send a message and wait for the answerRMQSendWait

Empty the RMQ connected to the task executing instruction.RMQEmptyQueue

Wait until a message has arrived, or timeout occurs.RMQReadWait

i Only if the robot is equipped with at least one of the options RobotStudio Connect or Multitasking.

Used toFunction

Get the name of a RAPID Message Queue client from a given
identity number, that is from a given rmqslot

RMQGetSlotName i

i Only if the robot is equipped with at least one of the options RobotStudio Connect or Multitasking.

68 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.10 Communication
Continued

1.11 Interrupts

Introduction
Interrupts are program-defined events, identified by interrupt numbers. An interrupt
occurs when an interrupt condition is true. Unlike errors, the occurrence of an
interrupt is not directly related to (synchronous with) a specific code position. The
occurrence of an interrupt causes suspension of the normal program execution
and control is passed to a trap routine.
Even though the robot immediately recognizes the occurrence of an interrupt (only
delayed by the speed of the hardware), its response – calling the corresponding
trap routine – can only take place at specific program positions, namely:

• when the next instruction is entered,
• any time during the execution of a waiting instruction, for example

WaitUntil,
• any time during the execution of a movement instruction, for example MoveL.

This normally results in a delay of 2-30 ms between interrupt recognition and
response, depending on what type of movement is being performed at the time of
the interrupt.
The raising of interrupts may be disabled and enabled. If interrupts are disabled,
any interrupt that occurs is queued and not raised until interrupts are enabled
again. Note that the interrupt queue may contain more than one waiting interrupt.
Queued interrupts are raised in FIFO order (first in, first out). Interrupts are always
disabled during the execution of a trap routine.
When running stepwise and when the program has been stopped, no interrupts
will be handled. Interrupts in queue at stop will be thrown away and any interrupts
generated under stop will not be dealt, except for safe interrupts, see Safe Interrupt
on page 71.
The maximum number of defined interrupts at any one time is limited to 100 per
program task.

Programming principles
Each interrupt is assigned an interrupt identity. It obtains its identity by creating a
variable (of data type intnum) and connecting this to a trap routine.
The interrupt identity (variable) is then used to order an interrupt, that is to specify
the reason for the interrupt. This may be one of the following events:

• An input or output is set to one or to zero.
• A given amount of time elapses after an interrupt is ordered.
• A specific position is reached.

When an interrupt is ordered, it is also automatically enabled, but can be temporarily
disabled. This can take place in two ways:

• All interrupts can be disabled. Any interrupts occurring during this time are
placed in a queue and then automatically generated when interrupts are
enabled again.

Continues on next page
Technical reference manual - RAPID overview 69
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.11 Interrupts

• Individual interrupts can be deactivated. Any interrupts occurring during this
time are disregarded.

Connecting interrupts to trap routines

Used toInstruction

Connect a variable (interrupt identity) to a trap routineCONNECT

Ordering interrupts

Used to orderInstruction

An interrupt from a digital input signalISignalDI

An interrupt from a digital output signalISignalDO

An interrupt from a group of digital input signalsISignalGI

An interrupt from a group of digital output signalsISignalGO

An interrupt from an analog input signalISignalAI

An interrupt from an analog output signalISignalAO

A timed interruptITimer

A position-fixed interrupt (from the Motion pick list)TriggInt

An interrupt when changing a persistent.IPers

Order and enable an interrupt when an error occursIError

An interrupt when a specified data type is received by a RAPID
Message Queue

IRMQMessage i

i Only if the robot is equipped with at least one of the options RobotStudio Connect or Multitasking.

Cancelling interrupts

Used toInstruction

Cancel (delete) an interruptIDelete

Enabling/disabling interrupts

Used toInstruction

Deactivate an individual interruptISleep

Activate an individual interruptIWatch

Disable all interruptsIDisable

Enable all interruptsIEnable

Interrupt data

Used toInstruction

Get interrupt data for current TRAPGetTrapData

Get information about an errorReadErrData

Continues on next page
70 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.11 Interrupts
Continued

Data type of interrupts

Used toData type

Define the identity of an interrupt.intnum

Contain the interrupt data that caused the current TRAP routine
to be executed.

trapdata

Specify an error type (gravity)errtype

Order and enable an interrupt when an error occurs.errdomain

Specify an error domain.errdomain

Safe Interrupt
Some instructions, for example ITimer and ISignalDI, can be used together
with Safe Interrupt. Safe Interrupts are interrupts that will be queued if they arrive
during stop or stepwise execution.The queued interrupts will be dealt with as soon
as continuos execution is started, they will be handled in FIFO order. Interrupts in
queue at stop will also be dealt with. The instruction ISleep can not be used
together with safe interrupts.

Interrupt manipulation
Defining an interrupt makes it known to the system. The definition specifies the
interrupt condition and activates and enables the interrupt.
Example:

VAR intnum sig1int;

ISignalDI di1, high, sig1int;

An activated interrupt may in turn be deactivated (and vice versa).
During the deactivation time, any generated interrupts of the specified type are
thrown away without any trap execution.
Example:

! deactivate

ISleep sig1int;

! activate

IWatch sig1int;

An enabled interrupt may in turn be disabled (and vice versa).
During the disable time, any generated interrupts of the specified type are queued
and raised first when the interrupts are enabled again.
Example:

! disable

IDisable sig1int;

1 enable

IEnable sig1int;

Deleting an interrupt removes its definition. It is not necessary to explicitly remove
an interrupt definition, but a new interrupt cannot be defined to an interrupt variable
until the previous definition has been deleted.

Continues on next page
Technical reference manual - RAPID overview 71
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.11 Interrupts

Continued

Example:
IDelete sig1int;

Trap routines
Trap routines provide a means of dealing with interrupts. A trap routine can be
connected to a particular interrupt using the CONNECT instruction. When an interrupt
occurs, control is immediately transferred to the associated trap routine (if any). If
an interrupt occurs, that does not have any connected trap routine, this is treated
as a fatal error, that is causes immediate termination of program execution.
Example:

VAR intnum empty;

VAR intnum full;

PROC main()

! Connect trap routines

CONNECT empty WITH etrap;

CONNECT full WITH ftrap;

! Define feeder interrupts

ISignalDI di1, high, empty;

ISignalDI di3, high, full;

...

! Delete interrupts

IDelete empty;

IDelete full;

ENDPROC

! Responds to “feeder empty” interrupt

TRAP etrap

open_valve;

RETURN;

ENDTRAP

! Responds to “feeder full” interrupt

TRAP ftrap

close_valve;

RETURN;

ENDTRAP

Several interrupts may be connected to the same trap routine. The system variable
INTNO contains the interrupt number and can be used by a trap routine to identify
an interrupt. After the necessary action has been taken, a trap routine can be
terminated using the RETURN instruction or when the end (ENDTRAP or ERROR) of
the trap routine is reached. Execution continues from the place where the interrupt
occurred.

72 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.11 Interrupts
Continued

1.12 Error recovery

Introduction
Many of the errors that occur when a program is being executed can be handled
in the program, which means that program execution does not have to be
interrupted. These errors are either of a type detected by the system, such as
division by zero, or of a type that is raised by the program, such as a program
raising an error when an incorrect value is read by a bar code reader.
An execution error is an abnormal situation, related to the execution of a specific
piece of a program. An error makes further execution impossible (or at least
hazardous). Overflow and division by zero are examples of errors.

Error numbers
Errors are identified by their unique error number and are always recognized by
the system. The occurrence of an error causes suspension of the normal program
execution and the control is passed to an error handler. The concept of error
handlers makes it possible to respond to and, possibly, recover from errors that
arise during program execution. If further execution is not possible, the error handler
can at least assure that the program is given a graceful abortion.

Programming principles
When an error occurs, the error handler of the routine is called (if there is one). It
is also possible to create an error from within the program and then jump to the
error handler.
In an error handler, errors can be handled using ordinary instructions. The system
data ERRNO can be used to determine the type of error that has occurred. A return
from the error handler can then take place in various ways (RETURN, RETRY,
TRYNEXT, and RAISE).
If the current routine does not have an error handler, the internal error handler of
the robot takes over directly. The internal error handler gives an error message
and stops program execution with the program pointer at the faulty instruction.

Creating an error situation from within the program Instruction

Used toInstruction

Create an error and call the error handlerRAISE

Booking an error number instruction

Used toInstruction

Book a new RAPID system error number.BookErrNo

Restarting/returning from the error handler

Used toInstruction

Stop program execution in the event of a fatal errorEXIT

Continues on next page
Technical reference manual - RAPID overview 73
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.12 Error recovery

Used toInstruction

Call the error handler of the routine that called the current
routine

RAISE

Re-execute the instruction that caused the errorRETRY

Execute the instruction following the instruction that caused
the error

TRYNEXT

Return to the routine that called the current routineRETURN

From a NOSTEPIN routine, the error is raised to the error
handler at user level.

RaiseToUser

An instruction that replaces the two instructions StartMove and
RETRY. It both resumes movements and re-execute the instruc-
tion that caused the error.

StartMoveRetry

Skip the latest requested warning message.SkipWarn

Reset the number of counted retries.ResetRetryCount

Used toFunction

Remaining retries left to do.RemainingRetries

Generate process error

Used toInstruction

Display an error message on the FlexPendant and write it in
the robot message log.

ErrLog

Create an error in the program and then call the error handler
of the routine.

ErrRaise

Used toFunction

Generate process error during robot movement.ProcerrRecovery

Data for error handling

Used toData type

The reason for the errorerrnum

Text in an error messageerrstr

Configuration for error handling

Used to defineSystem parameter

The number of times a failing instruction will be retried if the
error handler use RETRY. No Of Retry belongs to the type
System Misc in the topic Controller.

No Of Retry

Error handlers
Any routine may include an error handler. The error handler is really a part of the
routine, and the scope of any routine data also comprises the error handler of the
routine. If an error occurs during the execution of the routine, control is transferred
to its error handler.

Continues on next page
74 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.12 Error recovery
Continued

Example:
FUNC num safediv(num x, num y)

RETURN x / y;

ERROR

IF ERRNO = ERR_DIVZERO THEN

TPWrite "The number cannot be equal to 0";

RETURN x;

ENDIF

ENDFUNC

The system variable ERRNO contains the error number of the (most recent) error
and can be used by the error handler to identify that error. After any necessary
actions have been taken, the error handler can:

• Resume execution, starting with the instruction in which the error occurred.
This is done using the RETRY instruction. If this instruction causes the same
error again, up to four error recoveries will take place; after that execution
will stop. To be able to make more than four retries, you have to configure
the system parameterNoOf Retry, see Technical referencemanual - System
parameters.

• Resume execution, starting with the instruction following the instruction in
which the error occurred. This is done using the TRYNEXT instruction.

• Return control to the caller of the routine using the RETURN instruction. If the
routine is a function, the RETURN instruction must specify an appropriate
return value.

• Propagate the error to the caller of the routine using the RAISE instruction.

System error handler
When an error occurs in a routine that does not contain an error handler or when
the end of the error handler is reached (ENDFUNC, ENDPROC or ENDTRAP), the
system error handler is called. The system error handler just reports the error and
stops the execution.
In a chain of routine calls, each routine may have its own error handler. If an error
occurs in a routine with an error handler, and the error is explicitly propagated
using the RAISE instruction, the same error is raised again at the point of the call
of the routine - the error is propagated. When the top of the call chain (the entry
routine of the task) is reached without any error handler being found or when the
end of any error handler is reached within the call chain, the system error handler
is called. The system error handler just reports the error and stops the execution.
Since a trap routine can only be called by the system (as a response to an interrupt),
any propagation of an error from a trap routine is made to the system error handler.
Error recovery is not available for instructions in the backward handler. Such errors
are always propagated to the system error handler.
It is not possible to recover from or respond to errors that occur within an error
handler. Such errors are always propagated to the system error handler.

Continues on next page
Technical reference manual - RAPID overview 75
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.12 Error recovery

Continued

Errors raised by the program
In addition to errors detected and raised by the robot, a program can explicitly
raise errors using the RAISE instruction. This facility can be used to recover from
complex situations. It can, for example, be used to escape from deeply nested
code positions. Error numbers 1-90 may be used in the raise instruction. Explicitly
raised errors are treated exactly like errors raised by the system.

The event log
Errors that are handled by an error handler still result in a warning in the event log.
By looking in the event log it is possible to track what errors that have occurred.
If you want an error to be handled without writing a warning in the event log, use
the instruction SkipWarn in the error handler. This can be useful when using the
error handler to test something (for example if a file exists) without leaving any
trails if the test fails.

76 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.12 Error recovery
Continued

1.13 UNDO

Introduction
RAPID routines may contain an UNDO handler. The handler is executed automatically
if the program pointer is moved out of the routine. This is supposed to be used for
cleaning up remaining side-effects after partially executed routines, for example
canceling modal instructions (such as opening a file). Most parts of the RAPID
language can be used in an UNDO handler, but there are some limitations, for
example motion instructions.
The code in the UNDO handler shall be executed as fast as possible without any
delays, since the user probably is not aware of that any code will be run at that
point.

Terminology
The following terms are related to UNDO.

• UNDO: The execution of cleaning up code prior to a program reset.
• UNDO handler: An optional part of a RAPID procedure or function containing

RAPID code that is executed on an UNDO.
• UNDO routine: A procedure or a function with an UNDO handler.
• Call-chain: All procedures or functions currently associated to each other

through not-yet finished routine invocations. Assumed to start in the routine
Main if nothing else is specified.

• UNDO context: When the current routine is part of a call-chain starting in an
UNDO handler.

When to use UNDO
A RAPID routine can be aborted at any point by moving the program pointer out
of the routine. In some cases, when the program is executing certain sensitive
routines, it is unsuitable to abort. Using UNDO it is possible to protect such sensitive
routines against an unexpected program reset. With UNDO it is possible to have
certain code executed automatically if the routine is aborted. This code should
typically perform clean-up actions, for instance closing a file.

UNDO behavior in detail
When UNDO is activated, all UNDO-handlers in the current call-chain are executed.
These handlers are optional parts of a RAPID procedure or function, containing
RAPID code. The currently active UNDO-handlers are those who belong to
procedures or functions that has been invoked but not yet terminated, that is the
routines in the current call-chain.
UNDO is activated when the program pointer is unexpectedly moved out of an
UNDO-routine, for instance if the user moves the program pointer to Main. UNDO
is also started if an EXIT instruction is executed, causing the program to be reset,
or if the program is reset for some other reason, for instance when changing some
configuration or if the program or module is deleted. However, UNDO is not started
if the program reaches the end of the routine or a RETURN statement and returns
as usual from the routine.

Continues on next page
Technical reference manual - RAPID overview 77
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.13 UNDO

If there is more than one UNDO routine in the call-chain, the UNDO-handlers of the
routines will be processed in the same order the routines would have returned,
bottom-up. The UNDO-handler closest to the end of the call-chain will execute first
and the one closest to Main will execute last.

Limitations
An UNDO-handler can access any variable or symbol reachable from the normal
routine body, including locally declared variables. RAPID code that are to be
executed in UNDO context has however limitations.
An UNDO-handler must not contain STOP, DEBUGBREAK, RAISE, or RETURN. If an
attempt is made to use any of these instructions in UNDO context, the instruction
will be ignored and an ELOG warning is generated.
Motion instructions, for example MoveL, are not allowed in UNDO context either.
The execution is always continuous in UNDO, it is not possible to step. When UNDO

starts, the execution mode is set to continuous automatically. After the UNDO session
is finished, the old execution mode is restored.
If the program is stopped while executing an UNDO-handler, the rest of the handler
will not be executed. If there are additional UNDO-handlers in the call-chain that
have not yet been executed, they will be ignored as well. This will result in an ELOG
warning. This also includes stopping due to a runtime error.
The program pointer is not visible in an UNDO-handler. When UNDO executes, the
program pointer remains at its old location, but is updated when the
UNDO-handler(s) are finished.
An EXIT instruction aborts UNDO in similar way as a Run-time error or a Stop. The
rest of the UNDO-handlers are ignored and the program pointer is moved to Main.

Example
The program:

PROC B

TPWrite "In Routine B";

Exit;

UNDO

TPWrite "In UNDO of routine B";

ENDPROC

PROC A

TPWrite "In Routine A";

B;

ENDPROC

PROC main

TPWrite "In main";

A;

UNDO

TPWrite "In UNDO of main";

ENDPROC

Continues on next page
78 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.13 UNDO
Continued

The output:
In main

In Routine A

In Routine B

In UNDO of routine B

In UNDO of main

xx1100000588

Technical reference manual - RAPID overview 79
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.13 UNDO
Continued

1.14 System & time

Description
System and time instructions allow the user to measure, inspect and record time.

Programming principles
Clock instructions allow the user to use clocks that function as stopwatches. In
this way the robot program can be used to time any desired event.
The current time or date can be retrieved in a string. This string can then be
displayed to the operator on the FlexPendant display or used to time and date-stamp
log files.
It is also possible to retrieve components of the current system time as a numeric
value. This allows the robot program to perform an action at a certain time or on
a certain day of the week.

Using a clock to time an event

Used toInstruction

Reset a clock used for timingClkReset

Start a clock used for timingClkStart

Stop a clock used for timingClkStop

Used toFunction

Read a clock used for timingClkRead

Used toData type

Timing – stores a time measurement in secondsclock

Reading current time and date

Used toFunction

Read the current date as a stringCDate

Read the current time as a stringCTime

Read the current time as a numeric valueGetTime

Retrieve time information from file

Used toFunction

Retrieve the last time for modification of a file.FileTimeDnum

Retrieve file modify time for the loaded module.ModTimeDnum

Check if program module exist.ModExist

Get the size of free program memory

Used toFunction

Retrieve the size of free program memory.ProgMemFree

80 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.14 System & time

1.15 Mathematics

Description
Mathematical instructions and functions are used to calculate and change the value
of data.

Programming principles
Calculations are normally performed using the assignment instruction, for example
reg1:= reg2 + reg3 / 5. There are also some instructions used for simple
calculations, such as to clear a numeric variable.

Simple calculations on numeric data

Used toInstruction

Clear the valueClear

Add or subtract a valueAdd

Increment by 1Incr

Decrement by 1Decr

Generate a random numberRand

More advanced calculations

Used toInstruction

Perform calculations on any type of data.:=

Arithmetic functions

Used toFunction

Calculate the absolute valueAbs

Calculate the absolute valueAbsDnum

Returns the largest of two values.Max

Returns the smallest of two values.Min

Round a numeric valueRound

Round a numeric valueRoundDnum

Truncate a numeric valueTrunc

Truncate a numeric valueTruncDnum

Calculate the square rootSqrt

Calculate the square rootSqrtDnum

Calculate the exponential value with the base "e"Exp

Calculate the exponential value with an arbitrary basePow

Calculate the exponential value with an arbitrary basePowDnum

Calculate the arc cosine valueACos

Calculate the arc cosine valueACosDnum

Continues on next page
Technical reference manual - RAPID overview 81
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.15 Mathematics

Used toFunction

Calculate the arc sine valueASin

Calculate the arc sine valueASinDnum

Calculate the arc tangent value in the range [-90,90]ATan

Calculate the arc tangent value in the range [-90,90]ATanDnum

Calculate the arc tangent value in the range [-180,180]ATan2

Calculate the arc tangent value in the range [-180,180]ATan2Dnum

Calculate the cosine valueCos

Calculate the cosine valueCosDnum

Calculate the sine valueSin

Calculate the sine valueSinDnum

Calculate the tangent valueTan

Calculate the tangent valueTanDnum

Calculate Euler angles from an orientationEulerZYX

Calculate the orientation from Euler anglesOrientZYX

Invert a posePoseInv

Multiply a posePoseMult

Multiply a pose and a vectorPoseVect

Calculate the magnitude of a pos vectorVectMagn

Calculate the dot (or scalar) product of two pos vectorsDotProd

Calculate the cross (or vector) product of two pos vectorsCrossProd

Normalize unnormalized orientation (quaternion)NOrient

Convert a dnum numeric value to a num numeric valueDnumToNum

Convert a num numeric value to a dnum numeric valueNumToDnum

Bit functions

Used toInstruction

Clear a specified bit in a defined byte or dnum data.BitClear

Set a specified bit to 1 in a defined byte or dnum data.BitSet

Set all elements in a byte array to zero (0)BytesReset

Used toFunction

Check if a specified bit in a defined byte data is set to 1.BitCheck

Check if a specified bit in a defined dnum data is set to 1.BitCheckDnum

Execute a logical bitwise AND operation on data types byte.BitAnd

Execute a logical bitwise AND operation on data types dnum.BitAndDnum

Execute a logical bitwise NEGATION operation on data types
byte.

BitNeg

Execute a logical bitwise NEGATION operation on data types
dnum.

BitNegDnum

Continues on next page
82 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.15 Mathematics
Continued

Used toFunction

Execute a logical bitwise OR operation on data types byte.BitOr

Execute a logical bitwise OR operation on data types dnum.BitOrDnum

Execute a logical bitwise XOR operation on data types byte.BitXOr

Execute a logical bitwise XOR operation on data types dnum.BitXOrDnum

Execute a logical bitwise LEFT SHIFT operation on data types
byte.

BitLSh

Execute a logical bitwise LEFT SHIFT operation on data types
dnum.

BitLShDnum

Execute a logical bitwiseRIGHT SHIFT operation on data types
byte.

BitRSh

Execute a logical bitwiseRIGHT SHIFT operation on data types
dnum.

BitRShDnum

Used toData type

Used together with instructions and functions that handle bit
manipulation (8 bits).

byte

Used together with instructions and functions that handle bit
manipulation (52 bits).

dnum

Matrix functions

Used toInstruction

Calculates the sum of two matrices.MatrixAdd

Inverse a matrix.MatrixInverse

Multiply two matrices, or multiply matrix with scalar.MatrixMult

Set all elements in a matrix to 0.MatrixReset

Solve linear equation systems on the form A*x=b.MatrixSolve

Compute a QR-factorization of an (m x n) matrix A.MatrixSolveQR

Calculates the difference between two matricesMatrixSub

Compute a singular value decomposition (SVD).MatrixSVD

Transpose a matrix.MatrixTranspose

Fitting shapes to points

Used toInstruction

Fit a circle to 3D-points.FitCirle

Fit a line to a set of points.FitLine

Fit a plane to a set of points.FitPlane

Fit a sphere to a set of points.FitSphere

Technical reference manual - RAPID overview 83
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.15 Mathematics

Continued

1.16 File operation functions

Instructions

Used toInstruction

Create a new directory.MakeDir

Remove a directory.RemoveDir

Open a directory for further investigation.OpenDir

Close a directory in balance with OpenDir.CloseDir

Remove a file.RemoveFile

Rename a file.RenameFile

Copy a file.CopyFile

Functions

Used toFunction

Check the type of a file.ISFile

Retrieve the size of a file system.FSSize

Retrieve the size of a specified file.FileSize

Read next entry in a directory.ReadDir

Data types

Used toData type

Traverse directory structures.dir

84 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.16 File operation functions

1.17 RAPID support instructions

Description
Various functions for supporting of the RAPID language:

• Get system data, system information, memory information
• Read and write configuration data
• Restart the controller
• Test system data
• Get object name
• Get task name
• Search for symbols
• Get current event type, execution handler or execution level
• Read service information

Get system data

Used toInstruction

Get data and name of current active tool or work object.GetSysData

Reset state for the program pointer moved in manual mode.ResetPPMoved

Activate a specified system data name for a specified data
type.

SetSysData

Used toFunction

Test the system identity.IsSysID

Get information about the movement of the program pointer
(PP).

IsStopStateEvent

Test whether the program pointer is moved in manual mode.PPMovedInManMode

Check if the execution is performed on robot controller (RC)
or virtual controller (VC).

RobOS

Get information about the system
Functions to get information about options, products, serial number, software
version, robot type, LAN IP address, or controller language.

Used toFunction

Get name of options installed.GetNextOption

Get name of products installed.GetNextProduct

Get information about the system.GetSysInfo

Get information about memory

Used toFunction

Get the size of free program memoryProgMemFree

Continues on next page
Technical reference manual - RAPID overview 85
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.17 RAPID support instructions

Read configuration data
Instruction to read one attribute of a named system parameter.

Used toInstruction

Read one attribute of a named system parameter.ReadCfgData

Write configuration data
Instruction to write one attribute of a named system parameter.

Used toInstruction

Write one attribute of a named system parameter.WriteCfgData

Save configuration data
Instruction to save system parameter to file.

Used toInstruction

Save system parameters to fileSaveCfgData

Restart the controller

Used toInstruction

Restart the controller for example when you have changed
system parameters from RAPID.

WarmStart

Text tables instructions

Used toInstruction

Install a text table in the system.TextTabInstall

Used toFunction

Get the text table number of a user defined text table.TextTabGet

Get a text string from the system text tables.TextGet

Test whether the text table name (text resource string) is free
to use or not.

TextTabFreeToUse

Get object name
Instruction to get the name of an original data object for a current argument or
current data.

Used toInstruction

Return the original data object name.ArgName

Get information about the tasks

Used toFunction

Get the identity of the current program task, with its name and
number.

GetTaskName

Get the number of the current motion planner.MotionPlannerNo

Check if a task is executingTaskIsExecuting

Continues on next page
86 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.17 RAPID support instructions
Continued

Get current event type, execution handler or execution level

Used toFunction

Get current event routine type.EventType

Get type of execution handler.ExecHandler

Get execution level.ExecLevel

Used toData type

Event routine type.event_type

Type of execution handler.handler_type

Execution level.exec_level

Get current task selection panel status for a program task

Used toFunction

Get current task selection panel statusGetTSPStatus

Check if a normal task is activeTaskIsActive

Used toData type

Task selection panel statustsp_status

Search for symbols
Instructions to search for data objects in the system.

Used toInstruction

Set a new value to all data objects of a certain type that match
a given grammar.

SetAllDataVal

Together with GetNextSym data objects can be retrieved from
the system.

SetDataSearch

Get a value from a data object that is specified with a string
variable.

GetDataVal

Set a value for a data object that is specified with a string
variable.

SetDataVal

Used toFunction

Together with SetDataSearch data objects can be retrieved
from the system.

GetNextSym

Used toData type

Holds information of where a certain object is defined in the
system.

datapos

Read service information

Used toInstruction

Read service information from the system.GetServiceInfo

Continues on next page
Technical reference manual - RAPID overview 87
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.17 RAPID support instructions

Continued

Conversions

Used toFunction

Converts a byte array to a valueBytesToVal

Converts a value to a byte arrayValToBytes

88 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.17 RAPID support instructions
Continued

1.18 Calibration & service

Description
A number of instructions are available to calibrate and test the robot system.

Calibration of the tool

Used toInstruction

Calibrate the rotation of a moving tool.MToolRotCalib

Calibrate tool center point (TCP) for a moving tool.MToolTCPCalib

Calibrate tool center point (TCP) and rotation of a stationary
tool.

SToolRotCalib

Calibrate tool center point (TCP) for a stationary toolSToolTCPCalib

Various calibration methods

Used toFunction

Calculate the user coordinate system of a rotational axis type.CalcRotAxisFrame

Calculate the user coordinate system of a rotational axis type
when the master robot and the additional axis are located in
different RAPID tasks.

CalcRotAxFrameZ

Define a frame from original positions and displaced positions.DefAccFrame

Directing a value to the robot’s test signal
A reference signal, such as the speed of a motor, can be directed to an analog
output signal located on the backplane of the robot.

Used toInstruction

Define a test signalTestSignDefine

Reset all test signals definitionsTestSignReset

Used toFunction

Read test signal valueTestSignRead

Used toData type

For programming instruction TestSignDefinetestsignal

Recording of an execution
The recorded data is stored in a file for later analysis, and is intended for debugging
RAPID programs, specifically for multi-tasking systems.

Used toInstruction

Start the recording of instruction and time data during execu-
tion.

SpyStart

Stop the recording of time data during execution.SpyStop

Technical reference manual - RAPID overview 89
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.18 Calibration & service

1.19 String functions

Description
String functions are used for operations with strings such as copying, concatenation,
comparison, searching, conversion, etc.

Basic operations

Used toData type

String.string

Predefined constants STR_DIGIT, STR_UPPER, STR_LOWER,
and STR_WHITE.

Used toInstruction/operator

Format a stringStrFormat

Assign a value (copy of string):=

String concatenation+

Used toFunction

Find string lengthStrLen

Obtain part of a stringStrPart

Find string sizeStrSize

Comparison and searching

Used toOperator

Test if equal to=

Test if not equal to<>

Used toFunction

Check if character belongs to a setStrMemb

Search for character in a stringStrFind

Search for pattern in a stringStrMatch

Check if strings are in orderStrOrder

Conversion

Used toFunction

Convert a byte to string dataByteToStr

Convert a number specified in a readable string in the base 10
to the base 16

DecToHex

Convert a numeric value to a stringDnumToStr

Convert a number specified in a readable string in the base 16
to the base 10

HexToDec

Convert a numeric value to a stringNumToStr

Convert a string to a valueStrToVal

Continues on next page
90 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.19 String functions

Used toFunction

Map a stringStrMap

Convert a string to a byteStrToByte

Convert a value to a stringValToStr

Technical reference manual - RAPID overview 91
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.19 String functions

Continued

1.20 Multitasking

Description
The events in a robot cell are often in parallel, so why are the programs not in
parallel?
Multitasking RAPID is a way to execute programs in (pseudo) parallel. One parallel
program can be placed in the background or foreground of another program. It
can also be on the same level as another program.
For all settings, see Technical reference manual - System parameters.

Limitations
There are a few restrictions on the use of Multitasking RAPID.

• Do not mix up parallel programs with a PLC. The response time is the same
as the interrupt response time for one task. This is true, of course, when the
task is not in the background of another busy program.

• When running a Wait instruction in manual mode, a simulation box will come
up after 3 seconds. This will only occur in a NORMAL task.

• Move instructions can only be executed in the motion task (the task bind to
program instance 0, see Technical reference manual - System parameters).

• The execution of a task will halt during the time that some other tasks are
accessing the file system, that is if the operator chooses to save or open a
program, or if the program in a task uses the load/erase/read/write
instructions.

• The FlexPendant cannot access other tasks than a NORMAL task. So, the
development of RAPID programs for other SEMISTATIC or STATIC tasks
can only be done if the code is loaded into a NORMAL task, or offline.

Basics
To use this function the robot must be configured with one extra TASK for each
additional program. Each task can be of type NORMAL, STATIC, or SEMISTATIC.
Up to 20 different tasks can be run in pseudo parallel. Each task consists of a set
of modules, in the same way as the normal program. All the modules are local in
each task.
Variables, constants, and persistents are local in each task, but global persistents
are not. A persistent is global by default, if not declared as LOCAL or TASK. A
global persistent with the same name and type is reachable in all tasks that it is
declared in. If two global persistents have the same name, but their type or size
(array dimension) differ, a runtime error will occur.
A task has its own trap handling and the event routines are triggered only on its
own task system states (for example Start/Stop/Restart....).

Continues on next page
92 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking

General instructions and functions

Used toInstruction

Synchronize several program tasks at a special point in each
program

WaitSyncTask i

i If the robot is equipped with the option MultiTasking.

Used toFunction

Retrieve exclusive right to specific RAPID code areas or system
resources (type user poll)

TestAndSet

Retrieve exclusive right to specific RAPID code areas or system
resources (type interrupt control)

WaitTestAndSet

Check if the program task controls any mechanical unit.TaskRunMec

Check if the program task controls any TCP-robotTaskRunRob

Get the name of the mechanical unitGetMecUnitName

Used toData type

Identify available program tasks in the system.taskid

Specify the name of a synchronization pointsyncident

Specify several RAPID program taskstasks

MultiMove system with coordinated robots

Used toInstruction

Start a sequence of synchronized movementsSyncMoveOn i

To end synchronized movementsSyncMoveOff

Reset synchronized movementsSyncMoveUndo

i If the robot is equipped with the option MultiMove Coordinated.

Used toFunction

Tell if the current task is in synchronized modeIsSyncMoveOn

Returns the number of synchronized tasksTasksInSync

Used toData type

To specify the name of a synchronization pointsyncident i

Specify several RAPID program taskstasks

Identity for move instructionsidentno

i If the robot is equipped with the option MultiTasking.

Synchronizing the tasks
In many applications a parallel task only supervises some cell unit, quite
independently of the other tasks being executed. In such cases, no synchronization
mechanism is necessary. But there are other applications which need to know
what the main task is doing, for example.

Continues on next page
Technical reference manual - RAPID overview 93
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking

Continued

Synchronizing using polling
This is the easiest way to do it, but the performance will be the slowest. Persistents
are used together with the instructions WaitUntil, IF, WHILE, or GOTO.
If the instruction WaitUntil is used, it will poll internally every 100 ms. Do not
poll more frequently in other implementations.

Example
TASK 1:

MODULE module1

PERS bool startsync:=FALSE;

PROC main()

startsync:= TRUE;

ENDPROC

ENDMODULE

TASK 2:
MODULE module2

PERS bool startsync:=FALSE;

PROC main()

WaitUntil startsync;

ENDPROC

ENDMODULE

Synchronizing using an interrupt
The instructions SetDO and ISignalDO are used.

Example
TASK 1:

MODULE module1

PROC main()

SetDO do1,1;

ENDPROC

ENDMODULE

TASK 2:
MODULE module2

VAR intnum isiint1;

PROC main()

CONNECT isiint1 WITH isi_trap;

ISignalDO do1, 1, isiint1;

WHILE TRUE DO

WaitTime 200;

ENDWHILE

IDelete isiint1;

ENDPROC

TRAP isi_trap

.

ENDTRAP

Continues on next page
94 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking
Continued

ENDMODULE

Intertask communication
All types of data can be sent between two (or more) tasks with global persistent
variables.
A global persistent variable is global in all tasks. The persistent variable must be
of the same type and size (array dimension) in all tasks that declared it. Otherwise
a runtime error will occur.

Example
TASK 1:

MODULE module1

PERS bool startsync:=FALSE;

PERS string stringtosend:=””;

PROC main()

stringtosend:=”this is a test”;

startsync:= TRUE

ENDPROC

ENDMODULE

TASK 2:
MODULE module2

PERS bool startsync:=FALSE;

PERS string stringtosend:=””;

PROC main()

WaitUntil startsync;

!read string

IF stringtosend = “this is a test” THEN

...

ENDIF

ENDPROC

ENDMODULE

Type of task
Each task can be of type NORMAL, STATIC or SEMISTATIC.
STATIC and SEMISTATIC tasks are started in the system startup sequence. If the
task is of type STATIC, it will be restarted at the current position (where PP was
when the system was powered off). If the type is set to SEMISTATIC, it will be
started from the beginning each time the power is turned on, and modules specified
in the system parameters will be reloaded if the module file is newer that the loaded
module.
Tasks of type NORMALwill not be started at startup. They are started in the normal
way, for example, from the FlexPendant.

Continues on next page
Technical reference manual - RAPID overview 95
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking

Continued

Priorities
The way to run the tasks as default is to run all tasks at the same level in a round
robbin way (one basic step on each instance). But it is possible to change the
priority of one task by putting the task in the background of another. Then the
background will only execute when the foreground is waiting for some events, or
has stopped the execution (idle). A robot program with move instructions will be
in an idle state most of the time.
The example below describes some situations where the system has 10 tasks (see
Figure 9).
Round robbin chain 1: tasks 1, 2, and 9 are busy.
Round robbin chain 2: tasks 1, 4, 5, 6 and 9 are busy tasks 2 and 3 are idle.
Round robbin chain 3: tasks 3, 5 and 6 are busy tasks 1, 2, 9 and 10 are idle.
Round robbin chain 4: tasks 7 and 8 are busy tasks 1, 2, 3, 4, 5, 6, 9 and 10 are
idle.

xx1100000589

Figure 9: The tasks can have different priorities

TrustLevel
TrustLevel handles the system behavior when a SEMISTATIC or STATIC task is
stopped for some reason or not executable.

• SysFail - This is the default behavior, all other NORMAL tasks will also stop,
and the system is set to state SYS_FAIL. All jog and program start orders
will be rejected. Only a new warm start reset the system. This should be used
when the task has some security supervisions.

Continues on next page
96 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking
Continued

• SysHalt - All NORMAL tasks will be stopped. The system is forced to motors
off. When taking up the system to motors on it is possible to jog the robot,
but a new attempt to start the program will be rejected. A new warm start will
reset the system.

• SysStop - All NORMAL tasks will be stopped, but can be restarted. Jogging
is also possible.

• NoSafety - Only the actual task itself will stop.
See Technical reference manual - System parameters, topic Controller, type Task.

Recommendation
When specifying task priorities, think about the following:

• Always use the interrupt mechanism or loops with delays in supervision
tasks. Otherwise the FlexPendant will never get any time to interact with the
user. And if the supervision task is in foreground, it will never allow another
task in background to execute.

Technical reference manual - RAPID overview 97
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.20 Multitasking

Continued

1.21 Backward execution

Description
A program can be executed backwards one instruction at a time. The following
general restrictions are valid for backward execution:

• It is not possible to step backwards out of a IF, FOR, WHILE and TEST

statement.
• It is not possible to step backwards out of a routine when reaching the

beginning of the routine.
• Motion settings instructions, and some other instructions affecting the motion,

cannot be executed backwards. If attempting to execute such an instruction
a warning will be written in the event log.

• Most instructions and functions do not do anything when they are executed
backwards.

• When executing backward handlers and there is an execution error, it will
not be possible to handle the error in an error handler.

Backward handlers
Procedures may contain a backward handler that defines the backward execution
of a procedure call. If calling a routine inside the backward handler, the routine is
executed forward.
The backward handler is really a part of the procedure and the scope of any routine
data also comprises the backward handler of the procedure.
Instructions in the backward or error handler of a routine may not be executed
backwards. Backward execution cannot be nested, that is two instructions in a call
chain may not simultaneously be executed backwards.
A procedure with no backward handler cannot be executed backwards. A procedure
with an empty backward handler is executed as “no operation”.

Example 1
PROC MoveTo ()

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

When the procedure is called during forward execution, the following occurs:
MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

Example 2
PROC MoveTo ()

MoveL p1,v500,z10,tool1;

Continues on next page
98 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.21 Backward execution

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

When the procedure is called during forward execution, the following code is
executed (the code of the procedure until the backward handler):

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

When the procedure is called during backwards execution, the following code is
executed (the code in the backward handler):

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

Limitation of move instructions in the backward handler
The move instruction type and sequence in the backward handler must be a mirror
of the move instruction type and sequence for forward execution in the same
routine:

xx1100000633

Note that the order of CirPoint p2 and ToPoint p3 in the MoveC should be the
same.
Move instructions includes all instructions that result in some movement of the
robot or additional axes, such as MoveL, SearchC, TriggJ, ArcC, or PaintL.

WARNING

Any departures from this programming limitation in the backward handler can
result in faulty backward movement. Linear movement can result in circular
movement and vice versa, for some part of the backward path.

Continues on next page
Technical reference manual - RAPID overview 99
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.21 Backward execution

Continued

Behavior of the backward execution

MoveC and nostepin routines
When stepping forward through a MoveC instruction, the robot stops at the circular
point (the instruction is executed in two steps). However, when stepping backwards
though a MoveC instruction, the robot does not stop at the circular point (the
instruction is executed in one step).
It is not allowed to change from forward to backward execution when the robot is
executing a MoveC instruction.
To be able to change from forward to backward execution in a nostepin routine,
or vice versa, the system parameter StepOutNoStepin must be set.

Target, movement type and speed
When stepping forward though the program code, a program pointer indicates the
next instruction to execute and a motion pointer indicates the move instruction
that the robot is performing.
When stepping backward though the program code, the program pointer indicates
the instruction above the motion pointer. When the program pointer indicates one
move instruction and the motion pointer indicates another, the next backward
movement will move to the target indicated by the program pointer, using the
movement type and speed indicated by the motion pointer.
An exception, in terms of backward execution speed, is the instruction MoveExtJ.
This instruction use the speed related to the robtarget for both forward and
backward execution.

Example
This example illustrates the behavior when stepping backwards through move
instructions. The program pointer and motion pointer helps you keep track of where
the RAPID execution is and where the robot is.

B

C

A

xx1900002301

Continues on next page
100 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.21 Backward execution
Continued

Program pointerA

Motion pointerB

Highlighting of the robtarget that the robot is moving towards, or already
have reached

C

1 The program is stepped forward until the robot is in p5. The motion pointer
will indicate p5 and the program pointer will indicate the next move instruction
(MoveL p6).

2 The first press of the backward button will not move the robot, but the program
pointer will move to the previous instruction (MoveC p3, p4). This indicates
that this is the instruction that will be executed the next time backward button
is pressed.

3 The second press of the backward button will move the robot to p4 linearly
with the speed v300. The target for this movement (p4) is taken from the
MoveC instruction. The type of movement (linear) and the speed are taken
from the instruction below (MoveL p5). The motion pointer will indicate p4
and the program pointer will move up to MoveL p2.

4 The third press of the backward button will move the robot circularly, via p3,
to p2 with the speed v100. The target p2 is taken from the instruction MoveL

p2. The type of movement (circular), the circular point (p3) and the speed
are taken from the MoveC instruction. The motion pointer will indicate p2 and
the program pointer will move up to MoveL p1.

5 The fourth press of the backward button will move the robot linearly to p1
with the speed v200. The motion pointer will indicate p1 and the program
pointer will move up to MoveJ p0.

6 The first press of the forward button will not move the robot, but the program
pointer will move to the next instruction (MoveL p2).

7 The second press of the forward button will move the robot to p2 with the
speed v200.

Technical reference manual - RAPID overview 101
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

1 Basic RAPID programming
1.21 Backward execution

Continued

This page is intentionally left blank

2 Motion and I/O programming
2.1 Coordinate systems

2.1.1 The tool center point of the robot (TCP)

Description
The position of the robot and its movements are always related to the tool center
point (TCP). This point is normally defined as being somewhere on the tool, for
example in the muzzle of a glue gun, at the center of a gripper or at the end of a
grading tool.
Several TCPs (tools) may be defined, but only one may be active at any one time.
When a position is recorded, it is the position of the TCP that is recorded. This is
also the point that moves along a given path, at a given velocity.
If the robot is holding a work object and working on a stationary tool, a stationary
TCP is used. If that tool is active, the programmed path and speed are related to
the work object. See Stationary TCPs on page 113.

Related information

Described in

Technical referencemanual - System paramet-
ers

Definition of the world coordinate system

Operating manual - OmniCoreDefinition of the user coordinate system

Operating manual - OmniCoreDefinition of the object coordinate system

Operating manual - OmniCoreDefinition of the tool coordinate system

Operating manual - OmniCoreDefinition of a tool center point

Operating manual - OmniCoreDefinition of displacement frame

Operating manual - OmniCoreJogging in different coordinate systems

Technical reference manual - RAPID overview 103
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.1 The tool center point of the robot (TCP)

2.1.2 Coordinate systems used to determine the position of the TCP

Description
The tool (TCP) position can be specified in different coordinate systems to facilitate
programming and adjustment of programs.
The coordinate system defined depends on what the robot has to do. When no
coordinate system is defined, the robot’s positions are defined in the base
coordinate system.

Base coordinate system
In a simple application, programming can be done in the base coordinate system;
here the z-axis is coincident with axis 1 of the robot.

xx1100000611

The base coordinate system is located on the base of the robot:
• The origin is situated at the intersection of axis 1 and the base mounting

surface.
• The xy plane is the same as the base mounting surface.
• The x-axis points forwards.
• The y-axis points to the left (from the perspective of the robot).
• The z-axis points upwards.

World coordinate system
If the robot is floor mounted, programming in the base coordinate system is easy.
If, however, the robot is mounted upside down (suspended), programming in the
base coordinate system is more difficult because the directions of the axes are not
the same as the principal directions in the working space. In such cases, it is useful
to define a world coordinate system. The world coordinate system will be coincident
with the base coordinate system, if it is not specifically defined.
Sometimes, several robots work within the same working space. A common world
coordinate system is used in this case to enable the robot programs to communicate
with one another. It can also be a good idea to use this when the positions are
related to a fixed point in the workshop.

Continues on next page
104 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP

The following figure shows two robots (one suspended) with a common world
coordinate system.

xx1100000612

User coordinate system
A robot can work with different fixtures or working surfaces having different
positions and orientations. A user coordinate system can be defined for each
fixture. If all positions are stored in object coordinates, you will not need to
reprogram if a fixture must be moved or turned. By moving/turning the user
coordinate system as much as the fixture has been moved/turned, all programmed
positions will follow the fixture and no reprogramming will be required.
The user coordinate system is defined based on the world coordinate system.

Continues on next page
Technical reference manual - RAPID overview 105
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP

Continued

The following figure shows two user coordinate systems that describe the position
of two different fixtures.

xx1100000613

Object coordinate system
The user coordinate system is used to get different coordinate systems for different
fixtures or working surfaces. A fixture, however, may include several work objects
that are to be processed or handled by the robot. Thus, it often helps to define a
coordinate system for each object in order to make it easier to adjust the program
if the object is moved or if a new object, the same as the previous one, is to be
programmed at a different location. A coordinate system referenced to an object
is called an object coordinate system. This coordinate system is also very suited
to off-line programming since the positions specified can usually be taken directly
from a drawing of the work object. The object coordinate system can also be used
when jogging the robot.
The object coordinate system is defined based on the user coordinate system.

Continues on next page
106 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP
Continued

The following figure shows two object coordinate systems that describe the position
of two different work objects located in the same fixture.

xx1100000614

The programmed positions are always defined relative to an object coordinate
system. If a fixture is moved/turned, this can be compensated for by moving/turning
the user coordinate system. Neither the programmed positions nor the defined
object coordinate systems need to be changed. If the work object is moved/turned,
this can be compensated for by moving/turning the object coordinate system.
If the user coordinate system is movable, that is, coordinated additional axes are
used, then the object coordinate system moves with the user coordinate system.
This makes it possible to move the robot in relation to the object even when the
workbench is being manipulated.

Continues on next page
Technical reference manual - RAPID overview 107
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP

Continued

Displacement coordinate system
Sometimes, the same path is to be performed at several places on the same object.
To avoid having to re-program all positions each time, a coordinate system, known
as the displacement coordinate system, is defined. This coordinate system can
also be used in conjunction with searches, to compensate for differences in the
positions of the individual parts.
The displacement coordinate system is defined based on the object coordinate
system.

xx1100000615

If program displacement is active, all positions are displaced.

Continues on next page
108 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP
Continued

Coordinated additional axes

Coordination of user coordinate system
If a work object is placed on an external mechanical unit, that is moved whilst the
robot is executing a path defined in the object coordinate system, a movable user
coordinate system can be defined. The position and orientation of the user
coordinate system will, in this case, be dependent on the axes rotations of the
external unit. The programmed path and speed will thus be related to the work
object and there is no need to consider the fact that the object is moved by the
external unit.
The following figure shows a user coordinate system, defined to follow the
movements of a 3-axis external mechanical unit.

xx1100000616

Continues on next page
Technical reference manual - RAPID overview 109
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP

Continued

Coordination of base coordinate system
A movable coordinate system can also be defined for the base of the robot. This
is of interest for the installation when the robot is mounted on a track or a gantry,
for example. The position and orientation of the base coordinate system will, as
for the moveable user coordinate system, be dependent on the movements of the
external unit. The programmed path and speed will be related to the object
coordinate system and there is no need to think about the fact that the robot base
is moved by an external unit. A coordinated user coordinate system and a
coordinated base coordinate system can both be defined at the same time.
The following figure shows coordinated interpolation with a track moving the base
coordinate system of the robot.

xx1100000617

To be able to calculate the user and the base coordinate systems when involved
units are moved, the robot must be aware of:

• The calibration positions of the user and the base coordinate systems .
• The relations between the angles of the additional axes and the translation/

rotation of the user and the base coordinate systems.
• These relations are defined in the system parameters.

110 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.2 Coordinate systems used to determine the position of the TCP
Continued

2.1.3 Coordinate systems used to determine the direction of the tool

Description
The orientation of a tool at a programmed position is given by the orientation of
the tool coordinate system. The tool coordinate system is referenced to the wrist
coordinated system, defined at the mounting flange on the wrist of the robot.

Wrist coordinate system
In a simple application, the wrist coordinate system can be used to define the
orientation of the tool; here the z-axis is coincident with axis 6 of the robot.

xx1600000580

The wrist coordinate system cannot be changed and is always the same as the
mounting flange of the robot in the following respects:

• The origin is situated at the center of the mounting flange (on the mounting
surface).

• The x-axis points in the opposite direction, towards the control hole of the
mounting flange.

• The z-axis points outwards, at right angles to the mounting flange.

Tool coordinate system
The tool mounted on the mounting flange of the robot often requires its own
coordinate system to enable definition of its TCP, which is the origin of the tool
coordinate system. The tool coordinate system can also be used to get appropriate
motion directions when jogging the robot.
If a tool is damaged or replaced, all you have to do is redefine the tool coordinate
system. The program does not normally have to be changed.
The TCP (origin) is selected as the point on the tool that must be correctly
positioned, for example the muzzle on a glue gun. The tool coordinate axes are
defined as those natural for the tool in question.

Continues on next page
Technical reference manual - RAPID overview 111
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.3 Coordinate systems used to determine the direction of the tool

The following figure shows a tool coordinate system, as usually defined for an
arc-welding gun (left) and a spot welding gun (right).

xx1600000581

The tool coordinate system is defined based on the wrist coordinate system.
The following figure shows the tool coordinate system defined relative to the wrist
coordinate system, here for a gripper.

xx1600000582

Continues on next page
112 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.3 Coordinate systems used to determine the direction of the tool
Continued

Stationary TCPs
If the robot is holding a work object and working on a stationary tool, a stationary
TCP is used. If that tool is active, the programmed path and speed are related to
the work object held by the robot. This means that the coordinate systems will be
reversed, as in the following figure.
The following figure shows a stationary TCP, where the object coordinate system
is based on the wrist coordinate system.

xx1100000635

In the following figure, neither the user coordinate system nor program displacement
is used. It is, however, possible to use them and, if they are used, they will be
related to each other.

xx1100000636

Program displacement can also be used together with stationary TCPs

Technical reference manual - RAPID overview 113
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.1.3 Coordinate systems used to determine the direction of the tool

Continued

2.2 Positioning during program execution

2.2.1 Introduction

How movements are performed
During program execution, positioning instructions in the robot program control
all movements. The main task of the positioning instructions is to provide the
following information on how to perform movements:

• The destination point of the movement (defined as the position of the tool
center point, the orientation of the tool, the configuration of the robot and
the position of the additional axes).

• The interpolation method used to reach the destination point, for example
joint interpolation, linear interpolation or circle interpolation.

• The velocity of the robot and additional axes.
• The zone data (defines how the robot and the additional axes are to pass

the destination point, for example stop point or fly-by point).
• The coordinate systems (tool, user and object) used for the movement.

As an alternative to defining the velocity of the robot and the additional axes, the
time for the movement can be programmed. This should, however, be avoided if
the weaving function is used. Instead the velocities of the orientation and additional
axes should be used to limit the speed, when small or no TCP-movements are
made.

WARNING

In material handling and pallet applications with intensive and frequent
movements, the drive system supervision may trip out and stop the robot in order
to prevent overheating of drives or motors. If this occurs, the cycle time needs
to be slightly increased by reducing programmed speed or acceleration.

Related information

Described in:

Technical reference manual - RAPID Instructions,
Functions and Data types

Definition of speed

Technical reference manual - RAPID Instructions,
Functions and Data types

Definition of zones (corner paths)

Technical reference manual - RAPID Instructions,
Functions and Data types

Instruction for joint interpolation

Technical reference manual - RAPID Instructions,
Functions and Data types

Instruction for linear interpolation

Technical reference manual - RAPID Instructions,
Functions and Data types

Instruction for circular interpolation

Technical reference manual - RAPID Instructions,
Functions and Data types

Instruction for modified interpola-
tion

Singularities on page 147Singularity

Continues on next page
114 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.1 Introduction

Described in:

Synchronization with logical instructions on page 131Concurrent program execution

Technical reference manual - System parametersCPU Optimization

Technical reference manual - RAPID overview 115
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.1 Introduction

Continued

2.2.2 Interpolation of the position and orientation of the tool

Joint interpolation
When path accuracy is not too important, this type of motion is used to move the
tool quickly from one position to another. Joint interpolation also allows an axis to
move from any location to another within its working space, in a single movement.
All axes move from the start point to the destination point at constant axis velocity,
see the following figure.
Joint interpolation is often the fastest way to move between two points as the robot
axes follow the closest path between the start point and the destination point (from
the perspective of the axis angles).

xx1100000637

The velocity of the tool center point is expressed in mm/s (in the object coordinate
system). As interpolation takes place axis-by-axis, the velocity will not be exactly
the programmed value.
During interpolation, the velocity of the limiting axis, that is the axis that travels
fastest relative to its maximum velocity in order to carry out the movement, is
determined. Then, the velocities of the remaining axes are calculated so that all
axes reach the destination point at the same time.
All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is automatically optimized to the max performance of the robot.

Linear interpolation
During linear interpolation, the TCP travels along a straight line between the start
and destination points.

xx1100000638

To obtain a linear path in the object coordinate system, the robot axes must follow
a non-linear path in the axis space. The more non-linear the configuration of the
robot is, the more accelerations and decelerations are required to make the tool
move in a straight line and to obtain the desired tool orientation. If the configuration
is extremely non-linear (for example in the proximity of wrist and arm singularities),
one or more of the axes will require more torque than the motors can give. In this
case, the velocity of all axes will automatically be reduced.

Continues on next page
116 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.2 Interpolation of the position and orientation of the tool

The orientation of the tool remains constant during the entire movement unless a
reorientation has been programmed. If the tool is reorientated, it is rotated at
constant velocity.
A maximum rotational velocity (in degrees per second) can be specified when
rotating the tool. If this is set to a low value, reorientation will be smooth, irrespective
of the velocity defined for the tool center point. If it is a high value, the reorientation
velocity is only limited by the maximum motor speeds. As long as no motor exceeds
the limit for the torque, the defined velocity will be maintained. If, on the other hand,
one of the motors exceeds the current limit, the velocity of the entire movement
(with respect to both the position and the orientation) will be reduced.
All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is optimized automatically.

Circular interpolation
A circular path is defined using three programmed positions that define a circle
segment. The first point to be programmed is the start of the circle segment. The
next point is a support point (circle point) used to define the curvature of the circle,
and the third point denotes the end of the circle. The three programmed points
should be dispersed at regular intervals along the arc of the circle to make this as
accurate as possible.
The orientation defined for the support point is used to select between the short
and the long twist for the orientation from start to destination point. If the
programmed orientation is the same relative to the circle at the start and the
destination points, and the orientation at the support is close to the same orientation
relative to the circle, the orientation of the tool will remain constant relative to the
path.
The following figure shows circular interpolation with a short twist for part of a
circle (circle segment) with a start point, circle point and destination point.

xx1100000639

Continues on next page
Technical reference manual - RAPID overview 117
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.2 Interpolation of the position and orientation of the tool

Continued

However, if the orientation at the support point is programmed closer to the
orientation rotated 180°, the alternative twist is selected, as shown in the following
figure.

xx1100000640

As long as all motor torques do not exceed the maximum permitted values, the
tool will move at the programmed velocity along the arc of the circle. If the torque
of any of the motors is insufficient, the velocity will automatically be reduced at
those parts of the circular path where the motor performance is insufficient.
All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is optimized automatically.

SingArea\Wrist
During execution in the proximity of a singular point, linear or circular interpolation
may be problematic. In this case, it is best to use modified interpolation, which
means that the wrist axes are interpolated axis-by-axis, with the TCP following a
linear or circular path. The orientation of the tool, however, will differ somewhat
from the programmed orientation. The resulting orientation in the programmed
point may also differ from the programmed orientation due to two singularities.

xx1100000641

Continues on next page
118 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.2 Interpolation of the position and orientation of the tool
Continued

The first singularity is when TCP is straight ahead from axis 2 (a2 in the figure
above). The TCP cannot pass to the other side of axis 2, instead will axis 2 and 3
fold a bit more to keep the TCP on the same side and the end orientation of the
move will then be turned away from the programmed orientation with the same
size.
The second singularity is when TCP will pass near the z-axis of axis 1 (z1 in the
figure above). The axis 1 will in this case turn around with full speed and the tool
reorientation will follow in the same way. The direction of the turn is dependent of
what side the TCP will go. We recommend to change to joint interpolation (MoveJ)
near the z-axis. Note that it is the TCP that makes the singularity, not the WCP as
when SingArea\Off is used.
In the SingArea\Wrist case the orientation in the circle support point will be the
same as programmed. However, the tool will not have a constant direction relative
to the circle plane as for normal circular interpolation. If the circle path passes a
singularity, the orientation in the programmed positions sometimes must be
modified to avoid big wrist movements, which can occur if a complete wrist
re-configuration is generated when the circle is executed (joints 4 and 6 moved
180 degrees each).

Technical reference manual - RAPID overview 119
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.2 Interpolation of the position and orientation of the tool

Continued

2.2.3 Interpolation of corner paths

Description
Corner paths are used to get continuous movements past programmed positions.
In this way, positions can be passed at high speed without having to reduce the
speed unnecessarily. A fly-by point generates a corner path (parabola path) past
the programmed position. The beginning and end of this corner path are defined
by a zone around the programmed position.

Corner zone

for the TCP path

Corner path

Programmed

position

xx1100000643

All axes are coordinated in order to obtain a path that is independent of the velocity.
Speed and acceleration are optimized automatically.

Defining a corner path
The size of the corner zone is defined in the data type zonedata, which is used
as an argument in move instructions. For more information, see zonedata in
Technical reference manual - RAPID Instructions, Functions and Data types.

Smooth transitions between different speeds
If different TCP speeds have been programmed before and after the corner position,
the transition will be smooth and take place within the corner path without affecting
the actual path.
If different reorientation velocities are programmed before and after the corner
position, and if the reorientation velocities limit the movement, the transition from
one velocity to the other will take place smoothly within the corner path.

Fine-tuning the path
If the tool is to carry out a process (such as arc-welding, gluing or water cutting)
along the corner path, the size of the zone can be adjusted to get the desired path.
If the shape of the parabolic corner path does not match the object geometry, the
programmed positions can be placed closer together, making it possible to
approximate the desired path using two or more smaller parabolic paths.

Continues on next page
120 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths

Corner paths with reorientation
A fly-by point can have one zone size for TCP position (position zone) and one
zone size for tool reorientation and movement of additional axes (reorientation and
additional axis zone).
The reorientation and additional axis zone can be defined similar to the position
zone. The reorientation and additional axis zone is usually set larger than the
position zone. In this case, the reorientation will start interpolating towards the
orientation of the next position before the corner path starts. The reorientation will
then be smoother.
The tool will be reorientated so that the orientation at the end of the zone will be
the same as if a stop point had been programmed, see the following figures. Note
that the orientation outside the reorientation and additional axis zone is the same
for both cases (position C - E) but the orientation inside the zone changes more
smoothly than the programmed positions.

Position zone

Reorientation and

additional axis zone

p1

p2

p3

C

D

E

xx1100000648

If the middle position is a fly-by point,
program execution will look like this.

p1

p2

p3

A B

C

D

E

xx1100000647

If three positions with different tool orientations
are programmed as stop points, program execu-
tion will look like this.

The reorientation and additional axis zone is normally expressed in mm. In this
way, you can determine directly where on the path the zone begins and ends. If
the tool is not moved, the size of the zone is expressed in angle of rotation degrees
instead of TCP-mm.
The reorientation and additional axis zone is also used for additional axes, in the
same manner as for orientation. If the reorientation and additional axis zone is set
to be larger than the position zone, the interpolation of the additional axes towards
the destination of the next programmed position, will be started before the TCP
position corner path starts. This can be used for smoothing additional axes
movements in the same way as the tool orientation is used for the smoothing of
the wrist movements.

Corner paths when changing the interpolation method
Corner paths are also generated when one interpolation method is exchanged for
another. The interpolation method used in the actual corner paths is chosen in
such a way as to make the transition from one method to another as smooth as
possible. If the corner path zones for orientation and position are not the same
size, more than one interpolation method may be used in the corner path (see
Figure 30).
The following figure shows an example of interpolation when changing from one
interpolation method to another. Linear interpolation has been programmed between

Continues on next page
Technical reference manual - RAPID overview 121
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths

Continued

p1 and p2; joint interpolation between p2 and p3; and Sing Area\Wrist

interpolation between p3 and p4.

xx1100000649

If the interpolation is changed from a normal TCP-movement to a reorientation
without a TCP-movement or vice versa, no corner zone will be generated. The
same will be the case if the interpolation is changed to or from an external joint
movement without TCP-movement.

Interpolation when changing coordinate system
When there is a change of coordinate system in a corner path, for example a new
TCP or a new work object, joint interpolation of the corner path is used. This is
also applicable when changing from coordinated operation to non-coordinated
operation, or vice versa.

Continues on next page
122 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths
Continued

Size reduction of programmed corner zones
If programmed positions are located close to each other, it is not unusual for the
programmed zones to overlap. To get a well-defined path and to achieve optimum
velocity at all times, the robot reduces the size of the zone. As default, the robot
reduces the size of the zone to half the distance from one programmed position
to another.

Behavior between fly-by points
Too big programmed zones result in the zones being cut off to half the distance
from one overlapping programmed position to the other (see the following figure).

p1

p2

p3

p4

Generated

path

Programmed

position zone

Corner zone as

calculated by the robot

xx1800000783

Both the position zone and the reorientation and additional axis zone can overlap.
As soon as one of these corner path zones is too big, that zone is reduced.

Behavior between fly-by point and fine point
For a movement from a fine point to a fly-by point, the optional argument
\KeepStartPath can be used in the move instruction. This sets a zone around
the fine point in which the movement must follow the programmed path, and not
enter any corner zone.
Example:

MoveL p1,v500,fine,tool1;

MoveL p2,v500 \KeepStartPath:=15,z40,tool1;

MoveL p3,v500,fine,tool1;

Continues on next page
Technical reference manual - RAPID overview 123
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths

Continued

p1

p2

p3

Generated

path
Programmed

corner zone

Corner zone as

calculated by the robot

StartZone

xx1800000784

For a movement from a fly-by point to a fine point, the optional argument
\KeepEndPath can be used in the move instruction. This end zone is a distance
from the fine point during which the movement must follow the programmed path,
so any corner zone must end before entering the end zone.
Example:

MoveL p1,v500,fine,tool1;

MoveL p2,v500,z30,tool1;

MoveL p3,v500 \KeepEndPath:=15,fine,tool1;

p1

p2

p3

Generated

path

Programmed

corner zone
Corner zone as

calculated by the robot

End zone for

finepoint

xx1800000944

The KeepStartPath and KeepEndPath are specified in mm of TCP movement.
While the TCP is within this zone, the tool reorientation and additional axis
movement must also follow it programmed movement, and not be part of any
reorientation and additional axis corner zone.

Continues on next page
124 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths
Continued

Planning time for fly-by points
Occasionally, if the next movement is not planned in time, programmed fly-by
points can give rise to a stop point. This may happen when:

• A number of logical instructions with long program execution times are
programmed between short movements.

• The points are very close together at high speeds.
If stop points are a problem then use concurrent program execution.
To suppress warnings from corner path failures, use the instruction
CornerPathWarning.

Note

If the fly-by point is changed into a finepoint, the path after the recalculated point
can also be affected.
Path when p2 is a fly-by point:

p1

p2

p3

Generated

path

Programmed

corner zone

Corner zone as

calculated by the robot

p4

xx1800002286

Path when p2 is a finepoint:

p1

p2

p3

Generated

path

Programmed

corner zone

Corner zone as

calculated by the robot

p4

xx1800001538

Technical reference manual - RAPID overview 125
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.3 Interpolation of corner paths

Continued

2.2.4 Independent axes

Description
An independent axis is an axis moving independently of other axes in the robot
system. It is possible to change an axis to independent mode and later back to
normal mode again.
A special set of instructions handles the independent axes. Four different move
instructions specify the movement of the axis. For instance, the IndCMove

instruction starts the axis for continuous movement. The axis then keeps moving
at a constant speed (regardless of what the robot does) until a new
independent-instruction is executed.
To change back to normal mode a reset instruction, IndReset, is used. The reset
instruction can also set a new reference for the measurement system - a type of
new synchronization of the axis. Once the axis is changed back to normal mode
it is possible to run it as a normal axis.

Program execution
An axis is immediately change to independent mode when an Ind_Move instruction
is executed. This takes place even if the axis is being moved at the time, such as
when a previous point has been programmed as a fly-by point, or when
simultaneous program execution is used.
If a new Ind_Move instruction is executed before the last one is finished, the new
instruction immediately overrides the old one.
If a program execution is stopped when an independent axis is moving, that axis
will stop. When the program is restarted the independent axis starts automatically.
No active coordination between independent and other axes in normal mode takes
place.
If a loss of voltage occurs when an axis is in independent mode, the program
cannot be restarted. An error message is then displayed, and the program must
be started from the beginning.
Note that a mechanical unit may not be deactivated when one of its axes is in
independent mode.

Continues on next page
126 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.4 Independent axes

Stepwise execution
During stepwise execution, an independent axis is executed only when another
instruction is being executed. The movement of the axis will also be stepwise in
line with the execution of other instruments.

xx1100000652

Jogging
Axes in independent mode cannot be jogged. If an attempt is made to execute the
axis manually, the axis does not move and an error message is displayed. Execute
an IndReset instruction or move the program pointer to main, in order to leave
the independent mode.

Working range
The physical working range is the total movement of the axis.
The logical working range is the range used by RAPID instructions and read in the
jogging window.
After synchronization (updated revolution counter), the physical and logical working
range coincide. By using the IndReset instruction the logical working area can
be moved, see the following figure.

xx1100000653

The resolution of positions is decreased when moving away from logical position
0. Low resolution together with stiff tuned controller can result in unacceptable
torque, noise and controller instability. Check the controller tuning and axis
performance close to the working range limit at installation. Also check if the
position resolution and path performance are acceptable.

Continues on next page
Technical reference manual - RAPID overview 127
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.4 Independent axes

Continued

Speed and acceleration
In manual mode with reduced speed, the speed is reduced to the same level as if
the axis was running as non-independent. Note that the IndSpeed function will
not be TRUE if the axis speed is reduced.
The VelSet instruction and speed correction in percentage via the production
window, are active for independent movement. Note that correction via the
production window inhibits TRUE value from the IndSpeed function.
In independent mode, the lowest value of acceleration and deceleration, specified
in the configuration file, is used both for acceleration and deceleration. This value
can be reduced by the ramp value in the instruction (1 - 100%). The AccSet

instruction does not affect axes in independent mode.

Robot axes
Only robot axis 6 can be used as an independent axis. Normally the IndReset

instruction is used only for this axis. However, the IndReset instruction can also
be used for axis 4 on IRB 1600, 2600 and 4600 models (not for ID versions). If
IndReset is used for robot axis 4, then axis 6 must not be in the independent
mode.
If axis 6 is used as an independent axis, singularity problems may occur because
the normal 6-axes coordinate transform function is still used. If a problem occurs,
execute the same program with axis 6 in normal mode. Modify the points or use
SingArea\Wrist or MoveJ instructions.
The axis 6 is also internally active in the path performance calculation. A result of
this is that an internal movement of axis 6 can reduce the speed of the other axes
in the system.
The independent working range for axis 6 is defined with axis 4 and 5 in home
position. If axis 4 or 5 is out of home position the working range for axis 6 is moved
due to the gear coupling. However, the position read from FlexPendant for axis 6
is compensated with the positions of axis 4 and 5 via the gear coupling.

128 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.4 Independent axes
Continued

2.2.5 Soft Servo

Description
In some applications there is a need for a servo, which acts like a mechanical
spring. This means that the force from the robot on the work object will increase
as a function of the distance between the programmed position (behind the work
object) and the contact position (robot tool - work object).

Softness
The relationship between the position deviation and the force, is defined by a
parameter called softness. The higher the softness parameter, the larger the position
deviation required to obtain the same force.
The softness parameter is set in the program and it is possible to change the
softness values anywhere in the program. Different softness values can be set for
different joints and it is also possible to mix joints having normal servo with joints
having soft servo.
Activation and deactivation of soft servo as well as changing of softness values
can be made when the robot is moving. When this is done, a tuning will be made
between the different servo modes and between different softness values to achieve
smooth transitions. The tuning time can be set from the program with the parameter
ramp. With ramp = 1, the transitions will take 0.5 seconds, and in the general case
the transition time will be ramp x 0.5 in seconds.

Note

Deactivation of soft servo should not be done when there is a force between the
robot and the work object.

Note

With high softness values there is a risk that the servo position deviations may
be so big that the axes will move outside the working range of the robot.

Technical reference manual - RAPID overview 129
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.5 Soft Servo

2.2.6 Stop and restart

Stopping movement
A movement can be stopped in three different ways:

• For a program stop, soft stop or quick stop, the robot will stop on the path,
which makes a restart easy.

• For a halt with motors off, the mechanical brakes are used to achieve a
deceleration distance, which is as short as specified for safety reasons. The
path deviation will usually be bigger for a halt with motors off than for a stiff
stop.

Starting movement
After a stop (any of the types above) a restart can always be made on the interrupted
path. If the robot has stopped outside the programmed path, the restart will begin
with a return to the position on the path, where the robot should have stopped.
A restart following a power failure is equivalent to a restart after a halt with motors
off. It should be noted that the robot will always return to the path before the
interrupted program operation is restarted, even in cases when the power failure
occurred while a logical instruction was running. When restarting, all times are
counted from the beginning; for example, positioning on time or an interruption in
the instruction WaitTime.

130 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.2.6 Stop and restart

2.3 Synchronization with logical instructions

Logical instructions
Instructions are normally executed sequentially in the program. Nevertheless,
logical instructions can also be executed at specific positions or during an ongoing
movement.
A logical instruction is any instruction that does not generate a robot movement
or an additional axis movement, for example an I/O instruction.

Sequential program execution at stop points
If a positioning instruction has been programmed as a stop point, the next
instruction is not executed until the robot and the additional axes have come to a
standstill, that is, when the programmed position has been reached.

xx1100000654

Sequential program execution at fly-by points
If a positioning instruction has been programmed as a fly-by point, the next logical
instructions are executed some time before reaching the largest zone (for position,
orientation or additional axes). See the following figures. These instructions are
then executed in order.

xx1100000656

A logical instruction following a fly-by point
is executed before reaching the largest zone.

xx1100000655

A logical instruction following a fly-by point
is executed before reaching the largest zone.

The time at which they are executed (DT) comprises the following time components:
• The time it takes for the robot to plan the next move: approximately 0.1

seconds.
• The robot delay (servo lag) in seconds: 0-1.0 seconds depending on the

velocity and the actual deceleration performance of the robot.

Continues on next page
Technical reference manual - RAPID overview 131
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.3 Synchronization with logical instructions

Concurrent program execution
Concurrent program execution can be programmed using the argument \Conc in
the positioning instruction. This argument is used to execute one or more logical
instructions at the same time as the robot moves in order to reduce the cycle time
(for example used when communicating via I/O device).
When a positioning instruction with the argument \Conc is executed, the following
logical instructions are also executed (in sequence).

If the previous positioning instruction ends
at a fly-by point, the logical instructions are
executed at a given time (DT) before reach-
ing the largest zone (for position, orientation
or additional axes).

If the robot is not moving, or if the previous
positioning instruction ended with a stop point,
the logical instructions are executed as soon
as the current positioning instruction starts (at
the same time as the movement).

xx1100000658

xx1100000657

Instructions which indirectly affect movements, such as ConfL and SingArea, are
executed in the same way as other logical instructions. They do not, however,
affect the movements ordered by previous positioning instructions.
If several positioning instructions with the argument \Conc and several logical
instructions in a long sequence are mixed, logical instructions are executed directly,
in the order they were programmed. This takes place at the same time as the

Continues on next page
132 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.3 Synchronization with logical instructions
Continued

movement, which means that logical instructions are executed at an earlier stage
on the path than they were programmed.

xx1100000659

During concurrent program execution, the following instructions are programmed
to end the sequence and subsequently re-synchronize positioning instructions and
logical instructions:

• a positioning instruction to a stop point without the argument \Conc
• the instruction WaitTime or WaitUntil with the argument \Inpos.

Path synchronization
In order to synchronize process equipment (for applications such as gluing, painting
and arc welding) with the robot movements, different types of path synchronization
signals can be generated.
With a so-called positions event, a trig signal will be generated when the robot
passes a predefined position on the path. With a time event, a signal will be
generated in a predefined time before the robot stops at a stop position. Moreover,
the control system also handles weave events, which generate pulses at predefined
phase angles of a weave motion.
All the position synchronized signals can be achieved both before (look ahead
time) and after (delay time) the time that the robot passes the predefined position.
The position is defined by a programmed position and can be tuned as a path
distance before the programmed position.
Typical repeat accuracy for a set of digital outputs on the path is +/- 2 ms.
In the event of a power failure and restart in a Trigg instruction, all trigg events
will be generated once again on the remaining movement path for the Trigg

instruction.

Continues on next page
Technical reference manual - RAPID overview 133
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.3 Synchronization with logical instructions

Continued

Related information

Described in:

Motion on page 54Positioning instructions

Technical reference manual - RAPID Instructions, Functions and
Data types

Definition of zone size

134 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.3 Synchronization with logical instructions
Continued

2.4 Robot configuration

Different types of robot configurations
It is usually possible to attain the same robot tool position and orientation in several
different ways, using different sets of axis angles. We call these different robot
configurations.
If, for example, a position is located approximately in the middle of a work cell,
some robots can get to that position from above and below when using different
axis 1 directions, as shown in the following figure where the configuration to the
right is attained by rotating the arm backwards. Axis 1 is rotated 180 degrees.

xx1100000660

Some robots may also get to that position from above and below while using the
same axis 1 direction. This is possible for robot types with extended axis 3 working
range. In the following figure, two different arm configurations are used to attain
same position and orientation. The axis 1 angle is the same for both configurations.
The configuration on the right is attained by rotating the lower arm forward and
the upper arm backwards.

xx1100000661

This can also be achieved by turning the front part of the robot upper arm (axis 4)
upside down while rotating axes 5 and 6 to the desired position and orientation.
The following figure shows two different wrist configurations used to attain the
same position and orientation. In the configuration in which the front part of the
upper arm points upwards (lower), axis 4 has been rotated 180 degrees, axis 5

Continues on next page
Technical reference manual - RAPID overview 135
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.4 Robot configuration

through 180 degrees and axis 6 through 180 degrees in order to attain the
configuration in which the front part of the upper arm points downwards (upper).

xx1100000662

Specifying robot configuration
When programming a robot position, also a robot configuration is specified with
confdata cf1, cf4, cf6, cfx.
The way of specifying robot configuration differs for different kinds of robot types
(see Technical reference manual - RAPID Instructions, Functions and Data types
- confdata, for a complete description). However, for most robot types this includes
defining the appropriate quarter revolutions of axes 1, 4 and 6. For example, if axis
1 is between 0 and 90 degrees, then cf1=0, see the following figures.

xx1100000664

Quarter revolution for a negative joint angle
xx1100000663

Quarter revolution for a positive joint angle

Configuration control and monitoring
To achieve a well-defined robot movement it is usually desirable to let the robot
attain the same configuration during program execution as the one specified in
the program. To do this, configuration control and monitoring with ConfL\On or
ConfJ\On should be used. The configuration monitoring involves comparing the
configuration of the programmed position with that of the robot.
During linear movement, the robot always moves to the closest possible
configuration. If the configuration monitoring is active with ConfL\On, a verification
is made in advance to see if it is possible to achieve the programmed configuration.
If it is not possible the program is stopped. When the movement is finished (in a
zone or in a finepoint), it is also verified that the robot has reached the programmed
configuration. If the configuration is different the program is stopped. For a detailed
description of the configuration data for a specific robot type see the data type

Continues on next page
136 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.4 Robot configuration
Continued

confdata in Technical referencemanual - RAPID Instructions, Functions and Data
types.
During axis-by-axis movement the robot always moves to the programmed
configuration when ConfJ\On is used. No supervision of the axis movements is
performed when configuration control is enabled. Depending on the difference
between the start point configuration and the end point configuration a large
movement, of especially the wrist, can be a result. If the configuration supervision
is not active, the robot moves to the specified position and orientation with the
configuration that has the closest joint values compared to the start point.
When the execution of a programmed position is stopped because of a configuration
error, it may often be caused by some of the following reasons:

• The position is programmed offline with a faulty configuration.
• The robot tool has been changed causing the robot to take another

configuration than was programmed.
• The position is subject to an active frame operation (displacement, user,

object, base).
• The correct configuration in the destination position can be found by

positioning the robot near it and reading the configuration on the FlexPendant.
If the configuration parameters change because of active frame operation, the
configuration check can be deactivated.

Detailed information for ConfJ
MoveJ with ConfJ\Off:

• The robot is moved to the programmed position, with an axis position that
is closest to the axis position of the start. This means that the confdata in
the instruction is not used. No configuration supervision is done.

MoveJ with ConfJ\On:
• The robot is moved to the programmed position, with an axis position such

that the corresponding configuration is equal to or close to the programmed
configuration in the confdata.

• If a program displacement or path correction is active, the risk is that the
programmed configuration differs from the original position. As a result the
robot can perform large movements of the wrist axis to achieve the
programmed configuration.

Detailed information for ConfL
MoveL with ConfL\Off:

• The robot is moved along a straight line to the programmed position, with
an axis position that is closest to the axis position of the start. This means
that the confdata in the instruction is not used and no configuration
supervision is done.

MoveL with ConfL\On:
• First the end position is calculated in joints, using the programmed confdata

to determine the solution. Then the joint values for the configuration axes in
the end position are compared to the corresponding axes for the start position.

Continues on next page
Technical reference manual - RAPID overview 137
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.4 Robot configuration

Continued

If the new configuration data is OK compared to the start point the movement
will be permitted. In other cases the robot will stop in the start position with
an error message. For details about the allowed configuration error for
different robot types, see description of confdata, Technical reference
manual - RAPID Instructions, Functions and Data types.

• If no error was reported before the movement started the system will check
the configuration again when the movement is finished. If it is not the same
as the programmed configuration the program will be stopped.

Related information

Described in:

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

Definition of robot configuration

Motion on page 54Activating/deactivating the configuration
supervision

138 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.4 Robot configuration
Continued

2.5 Robot kinematic models

Robot kinematics
The position and orientation of a robot is determined from the kinematic model of
its mechanical structure. The specific mechanical unit models must be defined for
each installation. For standard ABB master and external robots, these models are
predefined in the controller.

Master robot
The kinematic model of the master robot models the position and orientation of
the tool of the robot relative to its base as function of the robot joint angles.
The kinematic parameters specifying the arm lengths, offsets and joint attitudes,
are predefined in the configuration file for each robot type.

xx1100000666

Continues on next page
Technical reference manual - RAPID overview 139
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.5 Robot kinematic models

A calibration procedure supports the definition of the base frame of the master
robot relative to the world frame.

xx1100000667

External robot
Coordination with an external robot also requires a kinematic model for the external
robot. A number of predefined classes of 2 and 3 dimensional mechanical structures
are supported.
The following figure shows a kinematic structure of an ORBIT 160B robot using
predefined model.

xx1100000668

Continues on next page
140 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.5 Robot kinematic models
Continued

Calibration procedures to define the base frame relative to the world frame are
supplied for each class of structures.

xx1100000670

Reference points on turntable for base frame calibration
of an ORBIT_160B robot in the home position using pre-
defined model.

xx1100000669

Base frame of an ORBIT_160B
robot.

General kinematics
Mechanical structures not supported by the predefined structures may be modelled
by using a general kinematic model. This is possible for external robots.
Modelling is based on theDenavit-Hartenberg convention according to Introduction
to Robotics, Mechanics & Control, by John J. Craigh (Addison-Wesley 1986).
The following figure shows a kinematic structure of an ORBIT 160B robot using
general kinematics model.

xx1100000671

Continues on next page
Technical reference manual - RAPID overview 141
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.5 Robot kinematic models

Continued

A calibration procedure supports the definition of the base frame of the external
robot relative to the world frame.

xx1100000673

Reference points on turntable for base frame calib-
ration of an ORBIT_160B robot in the home position
(joints = 0 degrees).

xx1100000672

Base frame of an ORBIT_160B robot
using general kinematics model.

Related information

Described in:

Technical referencemanual - System paramet-
ers

Definition of general kinematics of an ex-
ternal robot

142 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.5 Robot kinematic models
Continued

2.6 Motion supervision/collision detection

Introduction
Motion supervision is the name of a collection of functions for high sensitivity,
model-based supervision of the robot’s movements. Motion supervision includes
functionality for the detection of collision, jamming, and incorrect load definition.
This functionality is called collision detection (option Collision Detection).
The collision detection may trig if the data for the loads mounted on the robot are
not correct. This includes load data for tools, payloads and arm loads. If the tool
data or payload data are not known, the load identification functionality can be
used to define it. Arm load data cannot be identified.
When the collision detection is triggered, the robot is stopped as quickly as possible.
By default, the torques are reversed and the brakes are applied, but it is also
possible to configure a stop that does not use the brakes.
The motion supervision is by default active only when at least one axis (including
additional axes) is in motion. When all axes are standing still, the function is
deactivated. This is to avoid unnecessary triggering due to external process forces.
The system parameterCollision detection at standstill enables the detection of any
collision even at standstill, see Technical reference manual - System parameters.

Tuning of collision detection levels
The collision detection uses a variable supervision level. At low speeds it is more
sensitive than during high speeds. For this reason, no tuning of the function should
be required by the user during normal operating conditions. However, it is possible
to turn the function on and off and to tune the supervision levels. Separate tuning
parameters are available for jogging and program execution. The different tuning
parameters are described in Technical reference manual - System parameters.
There is a RAPID instruction called MotionSup which turns the function on and
off and modifies the supervision level. This is useful in applications where external
process forces act on the robot in certain parts of the cycle. The MotionSup

instruction is described in Technical reference manual - RAPID Instructions,
Functions and Data types.
The tune values are set in percent of the basic tuning where 100% corresponds to
the basic values. Increasing the percentage gives a less sensitive system and
decreasing gives the opposite effect. It is important to note that if tune values are
set in the system parameters and in the RAPID instruction both values are taken
into consideration. Example: If the tune value in the system parameters is set to

Continues on next page
Technical reference manual - RAPID overview 143
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.6 Motion supervision/collision detection

150% and the tune value is set to 200% in the RAPID instruction the resulting tune
level will be 300%.

xx1100000674

There is a maximum level to which the total collision detection tune level can be
changed. This value is set by default to 300% but it can be modified via the system
parameter motion_sup_max_level.

Modifying motion supervision
To modify modify the motion supervision, open the tasks.

1 Tap the Task list and select a task. If you have more than one task, you need
to set the desired values for each task separately.

Continues on next page
144 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.6 Motion supervision/collision detection
Continued

2 Tap OFF/ON to remove or activate path supervision. Tap -/+ to adjust
sensitivity. The sensitivity can be set between 0 and 300. Unless you have
the option Collision Detection installed, path supervision only affects the
robot in auto and manually full speed mode.

3 Tap OFF/ON to remove or activate jog supervision. Tap -/+ to adjust
sensitivity. The sensitivity can be set between 0 and 300. This setting has
no effect, unless you have the option Collision Detection installed.

For more information on Collision Detection, see Application manual - Controller
software OmniCore.

Digital outputs
The digital output MotSupOn is high when the collision detection function is active
and low when it is not active. Note that a change in the state of the function takes
effect when a motion starts. Thus, if the collision detection is active and the robot
is moving, MotSupOn is high. If the robot is stopped and the function turned off,
MotSupOn is still high. When the robot starts to move, MotSupOn switches to low.
The digital output MotSupTrigg goes high when the collision detection triggers.
It stays high until the error code is acknowledged, either from the FlexPendant or
through the digital input AckErrDialog.
The digital outputs are described in more detail in theOperatingmanual - OmniCore
and Technical reference manual - System parameters.

Limitations
The motion supervision is only available for the robot axes. It is not available for
track motions, orbit stations, or any other external manipulators.
The collision detection is deactivated when at least one axis is run in independent
joint mode. This is also the case even when it is an additional axis which is run as
an independent joint.
The collision detection may trigger when the robot is used in soft servo mode.
Therefore, it is advisable to turn the collision detection off when the robot is in soft
servo mode.
If the RAPID instruction MotionSup is used to turn off the collision detection, this
will only take effect once the robot starts to move. As a result, the digital output
MotSupOn may temporarily be high at program start before the robot starts to
move.
The distance the robot backs up after a collision is proportional to the speed of the
motion before the collision. If repeated low speed collisions occur, the robot may
not back up sufficiently to relieve the stress of the collision. As a result, it may not
be possible to jog the robot without the supervision triggering. In this case use the
jog menu to turn off the collision detection temporarily and jog the robot away from
the obstacle.
In the event of a stiff collision during program execution, it may take a few seconds
before the robot starts to back up.

Continues on next page
Technical reference manual - RAPID overview 145
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.6 Motion supervision/collision detection

Continued

If the robot is mounted on a track the collision detection should be set to off when
the track is moving. If it is not turned off the collision detection may trigger when
the track moves, even if there is no collision.

Related information

Described in:

Motion on page 54RAPID instruction MotionSup

Technical referencemanual - System parametersSystem parameters for tuning

Technical referencemanual - System parametersMotion supervision I/O signals

Technical referencemanual - System parametersCollision detection at standstill

Technical referencemanual - System parametersIndependent collision stop without brake

Operating manual - OmniCoreLoad identification

146 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.6 Motion supervision/collision detection
Continued

2.7 Singularities

Description
Some positions in the robot working space can be attained using an infinite number
of robot configurations to position and orient the tool. These positions, known as
singular points (singularities), constitute a problem when calculating the robot arm
angles based on the position and orientation of the tool.
Generally speaking, a robot has two types of singularities; arm singularities or
wrist singularities.
Arm singularities are all configurations where the wrist center (the intersection of
axes 4, 5, and 6) ends up directly above axis 1. Wrist singularities are configurations
where axis 4 and axis 6 are on the same line, that is axis 5 has an angle equal to
0.

xx1100000676

Wrist singularity occurs when axis 5 is at
0 degrees.

xx1100000675

Arm singularity occurs where the wrist center
and axis 1 intersect.

Continues on next page
Technical reference manual - RAPID overview 147
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.7 Singularities

Singularity points of robots without parallel rod
Robots without parallel rod (serial link robots) have the wrist singularity and the
arm singularity, and in addition, they have a third kind of singularity. This singularity
occurs at robot positions where the wrist center and the rotation centers of axes
2 and 3 are all in a straight line, see the following figure.

xx1100000677

Singularity points of serial link robots with 7 axes
Serial link robots with 7 axes, such as the IRB 14000/14050, have all the singularities
of 6-axis robots but also have two additional singularities.
The first of these is when axis 2 has an angle equal to zero so that axis 1 and axis
7 are on the same line. This is similar to the wrist singularity.
The second singularity is related to the calculation of the arm angle and varies
depending on which reference direction is configured, since the singularity occurs
when the WCP is on the reference direction. For more information, see Arm-Angle
Reference Direction in Technical reference manual - System parameters.

Program execution through singularities
During joint interpolation, problems do not occur when the robot passes singular
points.
When executing a linear or circular path close to a singularity, the velocities in
some joints (1 and 6/4 and 6) may be very high. In order not to exceed the maximum
joint velocities, the linear path velocity is reduced.
The high joint velocities may be reduced by using the mode (SingArea\Wrist)
when the wrist axes are interpolated in joint angles, while still maintaining the linear
path of the robot tool. An orientation error compared to the full linear interpolation
is however introduced.

Continues on next page
148 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.7 Singularities
Continued

Note that the robot configuration changes dramatically when the robot passes
close to a singularity with linear or circular interpolation. To avoid the
re-configuration, the first position on the other side of the singularity should be
programmed with an orientation that makes the re-configuration unnecessary.
Also, it should be noted that the robot must not be in its singularity when only
external joints are moved. This may cause robot joints to make unnecessary
movements.
For robots with 7 axes or more, the robot may be able to automatically adjust the
arm angle in order to avoid some singularities, see Operating manual - OmniCore.

Jogging through singularities
During joint interpolation, problems do not occur when the robot passes singular
points.
During linear interpolation, the robot cannot pass singular points. Moving close to
singularities may lead to a lower TCP speed while having large joint movements.

Related information

Described in:

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

Controlling how the robot is to act on exe-
cution near singular points

Technical reference manual - RAPID overview 149
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.7 Singularities

Continued

2.8 Optimized acceleration limitation

Description
The acceleration and speed of the robot is continuously controlled so that the
defined limits are not exceeded.
The limits are defined by the user program (for example programmed speed or
AccSet) or defined by the system itself (for example maximum torque in gearbox
or motor, maximum torque or force in robot structure).

Load data
As long as the load data (mass, center of gravity, and inertia) is within the limits
on the load diagram and correctly entered into the tool data, then no user defined
acceleration limits are needed and the service life of the robot is automatically
ensured.
If the load data lies outside the limits on the load diagram, then special restrictions
may be necessary, that is AccSet or lower speed, as specified on request from
ABB.

TCP acceleration
TCP acceleration and speed are controlled by the path planner with the help of a
complete dynamic model of the robot arms, including the user defined loads.
The TCP acceleration and speed depends on the position, speed, and acceleration
of all the axes at any instant in time and thus the actual acceleration varies
continuously. In this way the optimal cycle time is obtained, that is one or more of
the limits is at its maximum value at every instant. This means that the robot motors
and structure are utilized to their maximum capability at all times.

150 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.8 Optimized acceleration limitation

2.9 World Zones

Description of World Zones
When using world zones (option World Zones), the robot stops or an output is
automatically set if the robot is inside a special user-defined area. Here are some
examples of applications:

• When two robots share a part of their respective work areas. The possibility
of the two robots colliding can be safely eliminated by the supervision of
these signals.

• When external equipment is located inside the robot’s work area. A forbidden
work area can be created to prevent the robot colliding with this equipment.

• Indication that the robot is at a position where it is permissible to start program
execution from a PLC.

WARNING

For safety reasons, this software shall not be used for protection of personnel.
Use hardware protection equipment for that.

Using World Zones
Use World Zones:

• To indicate that the tool center point is in a specific part of the working area.
• To limit the working area of the robot in order to avoid collision with the tool.
• To make a common work area for two robots available to only one robot at

a time.

Definition of World Zones in the world coordinate system
World Zones are defined in the world coordinate system. The sides of the boxes
are parallel to the coordinate axes and the cylinder axis is parallel to the z-axis of
the world coordinate system.

xx1100000678

Continues on next page
Technical reference manual - RAPID overview 151
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.9 World Zones

A World Zone can be defined to be inside or outside the shape of the box, sphere,
or the cylinder.
World Zone can also be defined in joints. The zone is to be defined between (inside)
or not between (outside) two joint values for any robot or additional axes.

Supervision of the robot TCP

xx1100000679

The movement of the tool center point is supervised and not any other points on
the robot.
The TCP is always supervised irrespective of the mode of operation, for example,
program execution and jogging.

Stationary TCPs
If the robot is holding a work object and working on a stationary tool, a stationary
TCP is used. If that tool is active, the tool will not move and if it is inside a World
Zone then it is always inside.

Actions

Set a digital output when the TCP is inside a World Zone
This action sets a digital output when the TCP is inside a World Zone. It is useful
to indicate that the robot has stopped in a specified area.

xx1100000680

Continues on next page
152 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.9 World Zones
Continued

Set a digital output before the TCP reaches a World Zone
This action sets a digital output before the TCP reaches a World Zone. It can be
used to stop the robot just inside a World Zone.

xx1100000681

Stop the robot before the TCP reaches a World Zone
A World Zone can be defined to be outside the work area. The robot will then stop
with the Tool Center Point just outside the World Zone, when heading towards the
Zone.

xx1100000682

When the robot has been moved into a World Zone defined as an outside work
area, for example, by releasing the brakes and manually pushing, then the only
ways to get out of the Zone are by jogging or by manual pushing with the brakes
released.

Continues on next page
Technical reference manual - RAPID overview 153
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.9 World Zones

Continued

Minimum size of World Zones
Supervision of the movement of the tool center points is done at discrete points
with a time interval between them that depends on the path resolution. It is up to
the user to make the zones large enough so the robot cannot move right through
a zone without being checked inside the Zone.
Make sure that the zones are a bit larger than the minimum size.

xx1100000683

If the same digital output is used for more than one World Zone, the distance
between the Zones must exceed the minimum size, as shown in the table above,
to avoid an incorrect status for the output.
It is possible that the robot can pass right through a corner of a zone without it
being noticed, if the time that the robot is inside the zone is too short. Therefore,
make the size of the zone larger than the dangerous area.

xx1100000684

If World Zones are used in combination soft servo, the zone size must be additional
increased to compensate for the lag from soft servo. The soft servo lag is the
distance between the TCP of the robot and supervision of world zone at interpolation
time. The soft servo lag will be increased with higher softness defined with the
instruction SoftAct.

Maximum number of World Zones
A maximum of 20 World Zones can be defined at the same time.

Continues on next page
154 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.9 World Zones
Continued

Power failure, restart, and run on
Stationary World Zones will be deleted at power off and must be reinserted at
power on by an event routine connected to the event POWER ON.
Temporary World Zones will survive a power failure but will be erased when a new
program is loaded or when a program is started from the main program (PP to
Main or PP to routine).
The digital outputs for the World Zones will be updated first at Motors on. That is,
when the controller is restarted the World Zone status will be set to outside during
start. At first MOTORS ON after restart the World Zone status will be updated
correctly.
If the robot is moved during MOTORS OFF the World Zone status will not be
updated until next MOTORS ON order.
A hard emergency stop (not SoftAS, SoftGS, or SoftES) can result in an incorrect
World Zone status since the robot can move in or out of a Zone during the stopping
movement without the World Zone signals being updated. The World Zone signals
will be correctly updated after a MOTORS ON order.

Related information

Coordinate SystemsMotion and I/O principles

Technical reference manual - RAPID Instructions, Functions
and Data types

Data types:
• wztemporary

• wzstationary

• shapedata

Technical reference manual - RAPID Instructions, Functions
and Data types

Instructions:
• WZBoxDef

• WZSphDef

• WZCylDef

• WZHomeJointDef

• WZLimJointDef

• WZLimSup

• WZDOSet

• WZDisable

• WZEnable

• WZFree

Technical reference manual - RAPID overview 155
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.9 World Zones

Continued

2.10 I/O principles

Description
The robot generally has one or more I/O boards. Each of the boards has several
digital and/or analog channels which must be connected to logical signals before
they can be used. This is carried out in the system parameters and has usually
already been done using standard names before the robot is delivered. Logical
signals must always be used during programming.
A physical channel can be connected to several logical signals, but can also have
no logical connections, as shown in the following figure.
To be able to use an I/O board, its channels must be given logical signals. In the following figure, the
physical output 2 is connected to two different logical signals. IN16, on the other hand, has no logical
signal and thus cannot be used.

xx1100000685

Signal characteristics
The characteristics of a signal are depend on the physical channel used as well
as how the channel is defined in the system parameters. The physical channel
determines time delays and voltage levels (see the product specification for the
robot controller). The characteristics, filter times and scaling between programmed
and physical values, are defined in the system parameters.
When the power supply to the robot is switched on, all signals are set to zero. They
are not, however, affected by emergency stops or similar events.
An output can be set to one or zero from within the program. This can also be done
using a delay or in the form of a pulse. If a pulse or a delayed change is ordered
for an output, the program execution continues. The change is then carried out
without affecting the rest of the program execution. If, on the other hand, a new
change is ordered for the same output before the given time elapses, the first
change is not carried out.

Continues on next page
156 Technical reference manual - RAPID overview

3HAC065040-001 Revision: M
© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.10 I/O principles

The following figure shows an example where the instruction SetDO is not carried out at all because

a new command is given before the time delay has elapsed.

xx1100000686

Signals connected to interrupt
RAPID interrupt functions can be connected to digital signal changes. The function
can be called on a raising or falling edge of the signal. However, if the digital signal
changes very quickly, the interrupt can be missed.
For example, if a function is connected to a signal called do1 and the program
code is as follows:

SetDO do1,1;

SetDO do1,0;

The signal will first go to high (1) and then low (0) in a few milliseconds. In this
case the interrupt may be lost. To be sure that the interrupt is not lost, make sure
that the output is set before resetting it.
For example:

SetDO do1,1;

WaitDO do1 ,1;

SetDO do1,0;

With this method, no interrupts will be lost.

System signals
Logical signals can be interconnected by means of special system functions. If,
for example, an input is connected to the system function Start, a program start
is automatically generated as soon as this input is enabled. These system functions
are generally only enabled in automatic mode.

Cross connections
Digital signals can be interconnected in such a way that they automatically affect
one another:

• An output signal can be connected to one or more input or output signals.
• An input signal can be connected to one or more input or output signals.

Continues on next page
Technical reference manual - RAPID overview 157
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.10 I/O principles

Continued

• If the same signal is used in several cross connections, the value of that
signal is the same as the value that was last enabled (changed).

• Cross connections can be interlinked, in other words, one cross connection
can affect another. They must not, however, be connected in such a way so
as to form a "vicious circle", for example cross-connecting di1 to di2 whilst
di2 is cross-connected to di1.

• If there is a cross connection on an input signal, the corresponding physical
connection is automatically disabled. Any changes to that physical channel
will thus not be detected.

• Pulses or delays are not transmitted over cross connections.
• Logical conditions can be defined using NOT, AND, and OR.

DescriptionExamples

If di1 changes, then di2, di3, and do4 will be changed to the
corresponding value.

di2=di1

di3=di2

do4=di2

If do7 is set to 1, do8 will also be set to 1. If di5 is then set to 0,
do8 will also be changed (in spite of the fact that do7 is still 1).

do8=do7

do8=di5

do5 is set to 1 if both di6 and do1 are set to 1.do5 = di6 AND
do1

Limitations
A maximum of 10 signals can be pulsed at the same time and a maximum of 20
signals can be delayed at the same time.

Related information

Described in

Technical reference manual - System parametersDefinition of I/O boards and signals

Input and output signals on page 62Instructions for handling I/O

Operating manual - OmniCoreManual manipulation of I/O

158 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

2 Motion and I/O programming
2.10 I/O principles
Continued

3 Glossary
Glossary

DescriptionTerm

The parts of an instruction that can be changed, that is everything
except the name of the instruction.

Argument

The applicable mode when the operating mode selector is set toAutomatic mode

xx1100000688

One part of a record.Component

The position of the robot axes at a particular location.Configuration

Data that can only be changed manually.Constant

The path generated when passing a fly-by point.Corner path

The part of a routine or data that defines its properties.Declaration

Dialog boxes on the FlexPendant must always be acknowledged
(usually by tapping OK or Cancel) before they can be closed.

Dialog/Dialog box

A separate part of a routine where an error can be taken care of.
Normal execution can then be restarted automatically.

Error handler

A sequence of data and associated operands; for example reg1+5
or reg1>5.

Expression

A point which the robot only passes in the vicinity of – without
stopping. The distance to that point depends on the size of the
programmed zone.

Fly-by point

A routine that returns a value.Function

A number of digital signals that are grouped together and handled
as one signal.

Group signal

An event that temporarily interrupts program execution and ex-
ecutes a trap routine.

Interrupt

Electrical inputs and outputs.I/O

The routine that usually starts when the start button is pressed.Main routine

The applicable mode when the operating mode switch is set toManual mode

xx1100000687

A group of additional axes.Mechanical unit

A group of routines and data, that is a part of the program.Module

The state of the robot, that is whether or not the power supply to
the motors is switched on.

Motors On/Off

Continues on next page
Technical reference manual - RAPID overview 159
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

3 Glossary

DescriptionTerm

The panel located on the front of the controller.Operator panel

The direction of an end effector.Orientation

The input data of a routine, sent with the routine call. It corres-
ponds to the argument of an instruction.

Parameter

A variable, the value of which is persistent.Persistent

A routine which, when called, can independently form an instruc-
tion.

Procedure

The set of instructions and data which define the task of the robot.Program
Programs do not, however, contain system modules.

Data that can be accessed in a complete module or in the com-
plete program.

Program data

A module included in the robot’s program and which is transferred
when copying the program to a diskette.

Program module

A compound data type.Record

A subprogram.Routine

Local data that can only be used in a routine.Routine data

The instruction that will be executed first when starting program
execution.

Start point

A point at which the robot stops before it continues on to the next
point.

Stop point

A module that is always present in the program memory. When
a new program is read, the system modules remain in the program
memory.

System module

The settings which define the robot equipment and properties;
configuration data in other words.

System parameters

The point, generally at the tip of a tool, that moves along the
programmed path at the programmed velocity.

Tool Center Point (TCP)

The routine that defines what is to be done when a specific inter-
rupt occurs.

Trap routine

Data that can be changed from within a program, but which loses
its value (returns to its initial value) when a program is started
from the beginning.

Variable

The spherical space that surrounds a fly-by point. As soon as the
robot enters this zone, it starts to move to the next position.

Zone

160 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

3 Glossary
Continued

Index
.modx, 17
.sysx, 17

7
7 axes robots, 148

A
additional axes, 57, 109
aggregate, 27
aggregates

expressions, 39
alias data types, 27
AND, 36
argument, 159

conditional, 40
arguments

description, 11
arithmetic expressions, 35
arithmetic functions, 81
arrays

expressions, 38
variables, 31

assigning value to data, 48
atomic data type, 27
automatic mode, 159
axis configuration, 135

B
backward execution, 98
backward handler, 98
base coordinate system, 104, 110
binary communication, 66
bit functions, 82
bool, 49

C
calibration, 89
case sensitivity, 12
circular interpolation, 117
circular movement, 54, 117
clock, 80
collision detection, 59, 143
comment, 14
comments, 48
comments in UTF-8, 14
communication instructions, 65
component of a record, 27, 159
concurrent execution, 132
conditional argument, 40
confdata, 136
configuration, 159

robot, 135
configuration data, 86
ConfJ, 137
ConfL, 137
CONST, 32
constant, 29, 159
constants, 32

initialization values, 32
conversion, 90
conversions, 49
conveyor tracking, 59
coordinated additional axes, 109
coordinate systems, 103, 139

corner path, 120, 159
cross connections, 157

D
data, 27

assigning values, 48
constant, 29
declarations, 29
description, 11
initiating, 32
persistent, 29
program, 29
routine, 29
scope, 29
storage class, 33
used in expressions, 38
variable, 29

data types, 27
aggregates, 27
alias, 27
atomic, 27
components, 27
non-value, 27
record, 27
semi value, 27

declaration, 159
module, 18
routine, 23

declarations
constants, 32
persistents, 31
variables, 30

dialog box, 159
displacement coordinate system, 108
DIV, 35
dnum, 49

E
equal data types, 27
ERRNO, 75
error handler, 159
error handlers, 74
error numbers, 73
error recovery, 73
event log, 76
event type, 87
execution handler, 87
execution level, 87
expression, 159
expressions

arithmetic, 35
logical, 36
string, 37

F
file header, 15
file instructions, 66
file operation functions, 84
fly-by point, 120, 131, 159
function, 21, 159
function calls, 40
function declaration, 23

G
global

data, 29
routine, 21

Technical reference manual - RAPID overview 161
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Index

glossary, 159
group signal, 159

I
I/O, 159
I/O device communication, 66
I/O principles, 156
I/O signals, 62
I/O synchronization, 131
identifiers, 13
independent axes, 58, 126
indexing conveyor, 59
initiating data, 32
INOUT, 22
input signals, 62
instructions

description, 11
pick lists, 45
program flow, 46

interpolation, 116, 120
interrupt, 159
interrupted path, 60
interrupts, 55, 69

J
joint interpolation, 116
joint movement, 54, 116

K
kinematic models, 139

L
linear interpolation, 116
linear movement, 54, 116
load identification, 59
loading modules, 48
local

data, 29
routine, 21

logical expressions, 36
logical values, 14

M
main routine, 18, 159
manual mode, 159
mathematical instructions, 81
mechanical unit, 159
memory, 85
MOD, 35
modified linear interpolation, 118
module, 159
module declaration, 18
modules, 17

description, 17
motion, 54
motion data, 60
motion instructions, 54
motion settings

instructions, 50
motion supervision, 143
motors on/off, 159
move instructions, 54
MultiMove, 57, 93
Multitasking, 92

N
non-value data types, 27

NOT, 36
num, 49
numeric values, 14

O
object coordinate system, 106
operator panel, 160
operator priority, 42
optional parameter, 22
options, 85
OR, 36
orientation, 160
output signals, 62

P
parameter, 22, 160
path correction, 58
path recorder, 59
path synchronization, 133
PERS, 31
persistent, 29, 160
persistents, 31

initialization values, 32
pick lists, 45
placeholders, 15
position fix I/O, 133
position functions, 60
positioning instructions, 54
predefined data, 20
priority

operators, 42
tasks, 96

procedure, 21, 160
procedure call, 24
procedure declaration, 23
program, 17, 160
program data, 27, 29, 160
program flow instructions, 46
program module, 18, 160

Q
quarter revolutions, 136

R
RAPID Message Queues, 68
rawbytes communication, 67
record, 27, 160
records

expressions, 38
reserved words, 13
restart the controller, 86
robot configuration, 135
robot configuration supervision, 136
robot kinematics, 139
routine, 21, 160
routine data, 29, 160
routine declaration, 23
routines

description, 11

S
scope

data, 29
routine, 21

search instructions, 55
semi value data types, 27
serial link robot, 148

162 Technical reference manual - RAPID overview
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Index

service, 89
service information, 87
servo tracking, 59
signals, 62, 156
singularities, 118, 147
socket communication, 67
soft servo, 52, 129
start point, 160
stationary TCP, 113
status functions, 60
stop, 130
stopping program execution, 47
stop point, 160
string, 14, 49
string expressions, 37
string functions, 90
supervision

robot configuration, 136
switch, 22, 49
symbols, 14
synchronization, 131
syntax rules, 9
system data, 85
system information, 85
system module, 18, 160
system parameters, 160

T
tasks, 86, 92
task selection panel, 87
TCP, 103, 160

stationary, 113
terminating routine, 23
time instructions, 80
tool center point, 103, 160
tool coordinate system, 111
trap declaration, 24
trap routine, 21, 160
trap routines, 69, 72

U
UNDO, 77
user coordinate system, 105, 109
UTF-8, 14

V
VAR, 30
variable, 29, 160
variables, 30

arrays, 31
initialization values, 32

W
wait instructions, 48
world coordinate system, 104
world zones, 53, 151
wrist coordinate system, 111

X
XOR, 36

Z
zone, 120, 160

Technical reference manual - RAPID overview 163
3HAC065040-001 Revision: M

© Copyright 2019-2025 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
65
0
40

-0
0
1,
R
ev

M
,e
n

© Copyright 2019-2025 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	How to read this manual
	1 Basic RAPID programming
	1.1 Program structure
	1.1.1 Introduction
	Instructions
	Routines
	Data
	Other features

	1.1.2 Basic elements
	Identifiers
	Reserved words

	Spaces and new-line characters
	Numeric values
	Logical values
	String values
	Comments
	Placeholders
	File header
	Syntax
	Identifiers
	Numeric values
	Logical values
	String values
	Comments
	Characters

	1.1.3 Modules
	Introduction
	File format will enable using UTF8 characters in strings and comments
	Files in .mod or .sys format

	Program modules
	System modules
	Module declarations
	Program file structure
	Syntax
	Module declaration

	1.1.4 Predefined data
	Introduction
	Contents

	1.1.5 Routines
	Introduction
	Routine scope
	Parameters
	Routine termination
	Routine declarations
	Procedure declaration
	Function declaration
	Trap declaration

	Procedure call
	Syntax
	Routine declaration
	Parameters
	Procedure declaration
	Function declaration
	Trap routine declaration
	Procedure call

	1.2 Program data
	1.2.1 Data types
	Introduction
	Non-value data types
	Equal (alias) data types
	Syntax

	1.2.2 Data declarations
	Introduction
	Data scope
	Example
	Program data
	Routine data
	Example

	Variable declaration
	Persistent declaration
	Constant declaration
	Initiating data
	Storage class
	Syntax
	Data declaration
	Variable declaration
	Persistent declaration
	Constant declaration

	1.3 Expressions
	1.3.1 Types of expressions
	Description
	Arithmetic expressions
	Logical expressions
	String expressions

	1.3.2 Using data in expressions
	Introduction
	Arrays
	Records

	1.3.3 Using aggregates in expressions
	Introduction
	Prerequisites

	1.3.4 Using function calls in expressions
	Introduction
	Arguments
	Parameters

	1.3.5 Priority between operators
	Priority rules

	1.3.6 Syntax
	Expressions
	Operators
	Constant values
	Data
	Aggregates
	Function calls
	Special expressions
	Parameters

	1.4 Instructions
	Description
	Pick lists
	Syntax

	1.5 Controlling the program flow
	Introduction
	Programming principles
	Calling another routine
	Program control within the routine
	Stopping program execution
	Stop current cycle

	1.6 Various instructions
	Introduction
	Assigning a value to data
	Wait
	Comments
	Loading program modules
	Various functions
	Basic data
	Conversion function

	1.7 Motion settings
	Introduction
	Programming principles
	Maximum TCP speed Function
	Defining velocity
	Defining acceleration
	Defining configuration management
	Defining the payload
	Defining the behavior near singular points
	Activation and deactivation of event buffer
	Suppress corner path warnings
	Displacing a program
	Soft servo
	Adjust the robot tuning values
	World zones
	Various for motion settings

	1.8 Motion
	Principle for robot movement
	Programming principles
	Positioning instructions
	Searching
	Activating outputs or interrupts at specific positions
	Control of analog output signal proportional to actual TCP
	Motion control if an error/interrupt takes place
	Get robot info in a MultiMove system
	Controlling additional axes
	Independent axes
	Path correction
	Path Recorder
	Conveyor tracking
	Servo Tracking for Indexing Conveyor
	Load identification and collision detection
	Position functions
	Check interrupted path after power failure
	Status functions
	Motion data
	Basic data for movements
	Related information

	1.9 Input and output signals
	Signals
	Programming principles
	Changing the value of a signal
	Reading the value of input signals
	Reading the value of output signals
	Testing input or output signals
	Activating and deactivating I/O modules
	Mute and unmute I/O modules
	Defining input and output signals
	Get status of I/O network and device
	Read group signal information

	1.10 Communication
	Communicating via I/O devices and files
	Programming principles
	Communicating using the FlexPendant, function group TP
	Communicating using the FlexPendant, function group UI
	Reading from or writing to a character-based I/O device or file
	Communicating using binary I/O devices or files
	Communication using rawbytes
	Data for I/O devices or files
	Communicating using sockets
	Communication using RAPID Message Queues

	1.11 Interrupts
	Introduction
	Programming principles
	Connecting interrupts to trap routines
	Ordering interrupts
	Cancelling interrupts
	Enabling/disabling interrupts
	Interrupt data
	Data type of interrupts
	Safe Interrupt
	Interrupt manipulation
	Trap routines

	1.12 Error recovery
	Introduction
	Error numbers
	Programming principles
	Creating an error situation from within the program Instruction
	Booking an error number instruction
	Restarting/returning from the error handler
	Generate process error
	Data for error handling
	Configuration for error handling
	Error handlers
	System error handler
	Errors raised by the program
	The event log

	1.13 UNDO
	Introduction
	Terminology
	When to use UNDO
	UNDO behavior in detail
	Limitations
	Example

	1.14 System & time
	Description
	Programming principles
	Using a clock to time an event
	Reading current time and date
	Retrieve time information from file
	Get the size of free program memory

	1.15 Mathematics
	Description
	Programming principles
	Simple calculations on numeric data
	More advanced calculations
	Arithmetic functions
	Bit functions
	Matrix functions
	Fitting shapes to points

	1.16 File operation functions
	Instructions
	Functions
	Data types

	1.17 RAPID support instructions
	Description
	Get system data
	Get information about the system
	Get information about memory
	Read configuration data
	Write configuration data
	Save configuration data
	Restart the controller
	Text tables instructions
	Get object name
	Get information about the tasks
	Get current event type, execution handler or execution level
	Get current task selection panel status for a program task
	Search for symbols
	Read service information
	Conversions

	1.18 Calibration & service
	Description
	Calibration of the tool
	Various calibration methods
	Directing a value to the robot’s test signal
	Recording of an execution

	1.19 String functions
	Description
	Basic operations
	Comparison and searching
	Conversion

	1.20 Multitasking
	Description
	Limitations
	Basics
	General instructions and functions
	MultiMove system with coordinated robots
	Synchronizing the tasks
	Synchronizing using polling
	Example

	Synchronizing using an interrupt
	Example

	Intertask communication
	Example

	Type of task
	Priorities
	TrustLevel
	Recommendation

	1.21 Backward execution
	Description
	Backward handlers
	Example 1
	Example 2

	Limitation of move instructions in the backward handler
	Behavior of the backward execution
	MoveC and nostepin routines
	Target, movement type and speed
	Example

	2 Motion and I/O programming
	2.1 Coordinate systems
	2.1.1 The tool center point of the robot (TCP)
	Description
	Related information

	2.1.2 Coordinate systems used to determine the position of the TCP
	Description
	Base coordinate system
	World coordinate system
	User coordinate system
	Object coordinate system
	Displacement coordinate system
	Coordinated additional axes
	Coordination of user coordinate system
	Coordination of base coordinate system

	2.1.3 Coordinate systems used to determine the direction of the tool
	Description
	Wrist coordinate system
	Tool coordinate system
	Stationary TCPs

	2.2 Positioning during program execution
	2.2.1 Introduction
	How movements are performed
	Related information

	2.2.2 Interpolation of the position and orientation of the tool
	Joint interpolation
	Linear interpolation
	Circular interpolation
	SingArea\Wrist

	2.2.3 Interpolation of corner paths
	Description
	Defining a corner path
	Smooth transitions between different speeds
	Fine-tuning the path
	Corner paths with reorientation
	Corner paths when changing the interpolation method
	Interpolation when changing coordinate system
	Size reduction of programmed corner zones
	Behavior between fly-by points
	Behavior between fly-by point and fine point

	Planning time for fly-by points

	2.2.4 Independent axes
	Description
	Program execution
	Stepwise execution
	Jogging
	Working range
	Speed and acceleration
	Robot axes

	2.2.5 Soft Servo
	Description
	Softness

	2.2.6 Stop and restart
	Stopping movement
	Starting movement

	2.3 Synchronization with logical instructions
	Logical instructions
	Sequential program execution at stop points
	Sequential program execution at fly-by points
	Concurrent program execution
	Path synchronization
	Related information

	2.4 Robot configuration
	Different types of robot configurations
	Specifying robot configuration
	Configuration control and monitoring
	Detailed information for ConfJ
	Detailed information for ConfL

	Related information

	2.5 Robot kinematic models
	Robot kinematics
	Master robot
	External robot

	General kinematics
	Related information

	2.6 Motion supervision/collision detection
	Introduction
	Tuning of collision detection levels
	Modifying motion supervision
	Digital outputs
	Limitations
	Related information

	2.7 Singularities
	Description
	Singularity points of robots without parallel rod
	Singularity points of serial link robots with 7 axes
	Program execution through singularities
	Jogging through singularities
	Related information

	2.8 Optimized acceleration limitation
	Description
	Load data
	TCP acceleration

	2.9 World Zones
	Description of World Zones
	Using World Zones
	Definition of World Zones in the world coordinate system
	Supervision of the robot TCP
	Stationary TCPs
	Actions
	Set a digital output when the TCP is inside a World Zone
	Set a digital output before the TCP reaches a World Zone
	Stop the robot before the TCP reaches a World Zone

	Minimum size of World Zones
	Maximum number of World Zones
	Power failure, restart, and run on
	Related information

	2.10 I/O principles
	Description
	Signal characteristics
	Signals connected to interrupt
	System signals
	Cross connections
	Limitations
	Related information

	3 Glossary
	Glossary

	Index

